Zeros of hypergeometric functions in the p-adic setting

被引:0
|
作者
Saikia, Neelam [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
来源
RAMANUJAN JOURNAL | 2023年 / 61卷 / 04期
关键词
Character sum; Gauss sums; Jacobi sums; p-adic Gamma functions; POLYNOMIALS F(-N;
D O I
10.1007/s11139-022-00646-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
McCarthy (Pac J Math 261(1):219-236, 2013) defined hypergeometric functions in the p-adic setting over finite fields using p-adic gamma functions. These functions possess many properties that are analogous to classical hypergeometric type identities. In this paper, we investigate values of two generic families of these hypergeometric functions that we denote by (n)G(n)(t)(p) and (n)(G) over tilde (n)(t)(p) for n >= 3, and t is an element of F-p, the finite field with p elements. These results generalize special cases of p-adic analogues of Whipple's theorem and Dixon's theorem of classical hypergeometric series. We also examine zeros of the functions (n)G(n)(t)(p), and (n)(G) over tilde (n)(t)(p) over F-p. Moreover, we classify the values of t for which (n)G(n)(t)(p) = 0 for infinitely many primes. For example, we show that there are infinitely many primes for which (2k)G(2k)(-1)(p) = 0. In contrast, for t not equal 0 there are no primes for which (2k)(G) over tilde (2k)(t)(p) = 0.
引用
收藏
页码:1339 / 1355
页数:17
相关论文
共 50 条
  • [31] p-Adic GKZ hypergeometric complex
    Lei Fu
    Peigen Li
    Daqing Wan
    Hao Zhang
    Mathematische Annalen, 2023, 387 : 1629 - 1689
  • [32] P-ADIC INTERPOLATION AND CONTINUATION OF P-ADIC FUNCTIONS
    HA, HK
    LECTURE NOTES IN MATHEMATICS, 1983, 1013 : 252 - 265
  • [33] ON JACOBI SUMS, MULTINOMIAL COEFFICIENTS, AND P-ADIC HYPERGEOMETRIC-FUNCTIONS
    YOUNG, PT
    JOURNAL OF NUMBER THEORY, 1995, 52 (01) : 125 - 144
  • [34] Traces of Hecke operators in level 1 and p-adic hypergeometric functions
    Sudhir Pujahari
    Neelam Saikia
    The Ramanujan Journal, 2020, 52 : 519 - 539
  • [35] Zeros of p-Adic Differential Polynomials
    Escassut, A.
    Lu, W.
    Yang, C. C.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2014, 6 (02) : 166 - 170
  • [36] ZEROS OF P-ADIC EXPONENTIAL POLYNOMIALS
    VANDERPOORTEN, AJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1976, 79 (01): : 46 - 49
  • [37] p-ADIC ZEROS OF QUINTIC FORMS
    Dumke, Jan H.
    MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2469 - 2478
  • [38] ON THE p-ADIC ZEROS OF THE TRIBONACCI SEQUENCE
    Bilu, Yuri
    Luca, Florian
    Nieuwveld, Joris
    Ouaknine, Joel
    Worrell, James
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1333 - 1353
  • [39] COMPUTATION OF THE ZEROS OF P-ADIC L-FUNCTIONS .2.
    ERNVALL, R
    METSANKYLA, T
    MATHEMATICS OF COMPUTATION, 1994, 62 (205) : 391 - 406
  • [40] On exceptional zeros of Garrett–Hida p-adic L-functions
    Massimo Bertolini
    Marco Adamo Seveso
    Rodolfo Venerucci
    Annales mathématiques du Québec, 2022, 46 : 303 - 324