机构:Tsinghua University,Yau Mathematical Sciences Center
Lei Fu
Peigen Li
论文数: 0引用数: 0
h-index: 0
机构:Tsinghua University,Yau Mathematical Sciences Center
Peigen Li
Daqing Wan
论文数: 0引用数: 0
h-index: 0
机构:Tsinghua University,Yau Mathematical Sciences Center
Daqing Wan
Hao Zhang
论文数: 0引用数: 0
h-index: 0
机构:Tsinghua University,Yau Mathematical Sciences Center
Hao Zhang
机构:
[1] Tsinghua University,Yau Mathematical Sciences Center
[2] Yanqi Lake Beijing Institute of Mathematical Sciences and Applications,Department of Mathematics
[3] Tsinghua University,Department of Mathematics
[4] University of California,Yau Center
[5] Southeast University,undefined
来源:
Mathematische Annalen
|
2023年
/
387卷
关键词:
Primary 14F30;
Secondary 11T23;
14G15;
33C70;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, which are now called the GKZ hypergeometric system. Its solutions are GKZ hypergeometric functions. We study the p-adic counterpart of the GKZ hypergeometric system. The p-adic GKZ hypergeometric complex is a twisted relative de Rham complex of overconvergent differential forms with logarithmic poles. It is an over-holonomic object in the derived category of arithmetic D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {D}}}$$\end{document}-modules with Frobenius structures. Traces of Frobenius on fibers at Techmüller points of the GKZ hypergeometric complex define the hypergeometric function over the finite field introduced by Gelfand and Graev. Over the non-degenerate locus, the GKZ hypergeometric complex defines an overconvergent F-isocrystal. It is the crystalline companion of the ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell $$\end{document}-adic GKZ hypergeometric sheaf that we constructed before. Our method is a combination of Dwork’s theory and the theory of arithmetic D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {D}}}$$\end{document}-modules of Berthelot.
机构:
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Fu, Lei
Li, Peigen
论文数: 0引用数: 0
h-index: 0
机构:
Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
Tsinghua Univ, Dept Math, Beijing 100084, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Li, Peigen
Wan, Daqing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USATsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Wan, Daqing
Zhang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Yau Ctr, Nanjing 210096, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China