Performance optimization of In(Ga)As quantum dot intermediate band solar cells

被引:9
|
作者
Yang, Guiqiang [1 ,2 ]
Liu, Wen [1 ,2 ]
Bao, Yidi [1 ,2 ]
Chen, Xiaoling [1 ,2 ]
Ji, Chunxue [1 ,2 ]
Wei, Bo [1 ,3 ]
Yang, Fuhua [1 ,2 ]
Wang, Xiaodong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
[4] Beijing Engn Res Ctr Semicond Micronano Integrated, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
In(Ga)As quantum dot; Intermediate band solar cell; Strain; Thermal excitation; Carrier lifetime; OPTICAL-PROPERTIES; VOLTAGE RECOVERY; EFFICIENCY; LAYER; ABSORPTION; DEVICES; STRAIN;
D O I
10.1186/s11671-023-03839-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dot intermediate band solar cell (QD-IBSC) has high efficiency theoretically. It can absorb photons with energy lower than the bandgap of the semiconductor through the half-filled intermediate band, extending the absorption spectrum of the cell. However, issues in the IBSC, such as the strain around multi-stacking QDs, low thermal excitation energy, and short carrier lifetime, lead to its low conversion efficiency. In recent years, many efforts have been made from different aspects. In this paper, we focus on In(Ga)As QD-IBSC, list the experimental technologies used to improve the performance of the cell and review the recent research progress. By analyzing the effects of different technologies on conversion efficiency, the development direction of the In(Ga)As QD-IBSC in the future is proposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimization of Idealized Quantum Dot Intermediate Band Solar Cells Considering Spatial Variation of Generation Rates
    Sikder, Urmita
    Haque, Anisul
    IEEE ACCESS, 2013, 1 : 363 - 370
  • [22] Quantum-dot intermediate-band solar cells with inverted band alignment
    Franceschetti, A.
    Lany, S.
    Bester, G.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 41 (01): : 15 - 17
  • [23] Quantum Engineering of InAs/GaAs Quantum Dot Based Intermediate Band Solar Cells
    Beattie, Neil S.
    See, Patrick
    Zoppi, Guillaume
    Ushasree, Palat M.
    Duchamp, Martial
    Farrer, Ian
    Ritchie, David A.
    Tomic, Stanko
    ACS PHOTONICS, 2017, 4 (11): : 2745 - 2750
  • [24] AlGaInAs quantum dot solar cells: tailoring quantum dots for intermediate band formation
    Schneider, C.
    Kremling, S.
    Tarakina, N. V.
    Braun, T.
    Adams, M.
    Lermer, M.
    Reitzenstein, S.
    Worschech, L.
    Kamp, M.
    Hoefling, S.
    Forchel, A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (03)
  • [25] Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells
    Popescu, Voicu
    Bester, Gabriel
    Hanna, Mark C.
    Norman, Andrew G.
    Zunger, Alex
    PHYSICAL REVIEW B, 2008, 78 (20)
  • [26] Urbach Tail in Intermediate Band InAs/GaAs Quantum Dot Solar Cells
    Li, Tian
    Dagenais, Mario
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 3622 - 3625
  • [27] High In Composition InGaN for InN Quantum Dot Intermediate Band Solar Cells
    Gomez, Victor J.
    Soto Rodriguez, Paul E. D.
    Kumar, Praveen
    Calleja, Enrique
    Noetzel, Richard
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
  • [28] Simulating quantum dot intermediate band solar cells by enhanced semiclassical model
    Cappelluti, F.
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES XIII, 2024, 12881
  • [29] Intraband absorption for normal illumination in quantum dot intermediate band solar cells
    Luque, Antonio
    Marti, Antonio
    Antolin, Elisa
    Garcia-Linares, Pablo
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) : 2032 - 2035
  • [30] Theory of plasmonic quantum-dot-based intermediate band solar cells
    Foroutan, Sina
    Baghban, Hamed
    APPLIED OPTICS, 2016, 55 (13) : 3405 - 3412