Surgical Navigation System for Pedicle Screw Placement Based on Mixed Reality

被引:1
|
作者
Hwang, Seokbin [1 ]
Lee, Suk-joong [2 ,3 ]
Kim, Sungmin [4 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, 93 Daehak Ro, Ulsan 44610, South Korea
[2] Gyeongsang Natl Univ, Coll Med, Dept Orthopaed Surg, 11 Samjeongja Ro, Chang Won, Gyeongsangnam D, South Korea
[3] Gyeongsang Natl Univ, Changwon Hosp, 11 Samjeongja Ro, Chang Won, Gyeongsangnam D, South Korea
[4] Univ Ulsan, Dept Biomed Engn, 93 Daehak Ro, Ulsan 44610, South Korea
基金
新加坡国家研究基金会;
关键词
HoloLens; mixed reality; pedicle screw placement; surgical navigation; ACCURACY; METAANALYSIS;
D O I
10.1007/s12555-023-0083-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inaccurate screw insertion has been a major concern in pedicle screw placement in spinal surgery because of the potential for postoperative complications. Efforts to improve screw insertion have led to the development of novel surgical navigation systems. However, current surgical navigation systems have several problems in that the attention of surgeons is frequently interrupted during surgery, and complications occur in their depth perception because of the limitations of 2D monitors. This study proposes a surgical navigation system to address these issues using mixed reality (MR)-based smart glasses. We developed a navigation system that provides 3D visualization of the surgical tool with respect to the patient's anatomy. It utilizes preoperative surgical planning data to provide visual feedback and guidance. An orthopedic surgeon performed pedicle screw placement with the navigation system in two different environments, using Microsoft HoloLens (HoloLens) and a 2D monitor. The results were evaluated according to procedural time, translational error, angular error, and clinical accuracy. The mean procedural time was 111.3 +/- 52.7 s with the HoloLens and 192.1 +/- 104.0 s with the 2D monitor. The mean translational error was 2.14 +/- 1.13 mm at the entry and 3.14 +/- 0.90 mm at the target with HoloLens. With the 2D monitor, the mean translational error was 2.10 +/- 0.97 mm and 3.41 +/- 2.16 mm at the entry and the target, respectively. The mean angular error was 6.44 +/- 1.94 deg with HoloLens and 7.14 +/- 4.20 deg with the 2D monitor. All screws were inserted intrapedicularly in both environments. The navigation system enables free visualization, reflects the human eye's perspective, and retains the advantages of MR-based smart glasses. A navigation system compatible with minimally invasive surgery should be developed in the future.
引用
收藏
页码:3983 / 3993
页数:11
相关论文
共 50 条
  • [1] Surgical Navigation System for Pedicle Screw Placement Based on Mixed Reality
    Seokbin Hwang
    Suk-joong Lee
    Sungmin Kim
    International Journal of Control, Automation and Systems, 2023, 21 : 3983 - 3993
  • [2] Surgical safety of cervical pedicle screw placement with computer navigation system
    Nobuyuki Shimokawa
    Toshihiro Takami
    Neurosurgical Review, 2017, 40 : 251 - 258
  • [3] Surgical safety of cervical pedicle screw placement with computer navigation system
    Shimokawa, Nobuyuki
    Takami, Toshihiro
    NEUROSURGICAL REVIEW, 2017, 40 (02) : 251 - 258
  • [4] Analysis of CT-based Navigation System for Pedicle Screw Placement
    Hodges, Scott D.
    Eck, Jason C.
    Newton, Danette
    ORTHOPEDICS, 2012, 35 (08) : E1221 - E1224
  • [5] Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study
    Ma, Longfei
    Zhao, Zhe
    Chen, Fang
    Zhang, Boyu
    Fu, Ligong
    Liao, Hongen
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (12) : 2205 - 2215
  • [6] Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study
    Longfei Ma
    Zhe Zhao
    Fang Chen
    Boyu Zhang
    Ligong Fu
    Hongen Liao
    International Journal of Computer Assisted Radiology and Surgery, 2017, 12 : 2205 - 2215
  • [7] A Novel Pedicle Screw Placement Surgery Based on Integration of Surgical Guides and Augmented Reality
    Kong, Huiyang
    Wang, Shuyi
    Zhang, Can
    Chen, Zan
    Wu, Zhanglei
    Wang, Jiayu
    JOURNAL OF NEUROLOGICAL SURGERY PART A-CENTRAL EUROPEAN NEUROSURGERY, 2025,
  • [8] Mixed Reality-Based Navigation for Pedicle Screw Placement: A Preliminary Study Using a 3D-Printed Spine Model
    Ohashi, Masayuki
    Sato, Masayuki
    Tashi, Hideki
    Minato, Keitaro
    Makino, Tatsuo
    Kawashima, Hiroyuki
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (04)
  • [9] A Spine Robotic-Assisted Navigation System for Pedicle Screw Placement
    Chen, Hsuan-Yu
    Xiao, Xiu-Yun
    Chen, Chih-Wei
    Chou, Hao-Kai
    Sung, Chen-Yu
    Lin, Feng Huei
    Chen, Po-Quang
    Wong, Tze-hong
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (159):
  • [10] Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Augmented Reality Surgical Navigation for Percutaneous Pedicle Screw Placement
    Charles, Yann P.
    Cazzato, Roberto L.
    Nachabe, Rami
    Chatterjea, Anindita
    Steib, Jean-Paul
    Gangi, Afshin
    CLINICAL SPINE SURGERY, 2021, 34 (07): : E415 - E424