Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation

被引:8
|
作者
Raghunath, Ananditha [1 ]
Nguyen, Dan D. [2 ]
Schram, Matthew [3 ]
Albert, David [3 ]
Gollakota, Shyamnath [1 ]
Shapiro, Linda [1 ]
Sridhar, Arun R. [4 ,5 ]
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA USA
[2] St Lukes Mid Amer Heart Inst, Kansas City, MO USA
[3] AliveCor Inc, Mountain View, CA USA
[4] Univ Washington, Heart Inst, Dept Med, Seattle, WA USA
[5] Univ Washington, Div Cardiol, POB 356422, 1959 NE Pacific St, Seattle, WA 98195 USA
来源
CARDIOVASCULAR DIGITAL HEALTH JOURNAL | 2023年 / 4卷 / 01期
关键词
Artificial intelligence-based electrocardiographic anal-ysis; Atrial fibrillation; Atrial fibrillation event prediction; Mobile electrocardiography; Scalable technology; Sinus rhythm; ISCHEMIC-STROKE; APPENDAGE; RISK;
D O I
10.1016/j.cvdhj.2023.01.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Paroxysmal atrial fibrillation (AF) often eludes early diagnosis, resulting in significant morbidity and mortality. Artificial intelligence (AI) has been used to predict AF from sinus rhythm electrocardiograms (ECGs), but AF prediction using sinus rhythm mobile electrocardiograms (mECG) remains unexplored.OBJECTIVE The purpose of this study was to investigate the utility of AI to predict AF events prospectively and retrospectively using sinus rhythm mECG data.METHODS We trained a neural network to predict AF events from sinus rhythm mECGs obtained from users of the Alivecor KardiaMo-bile 6L device. We tested our model on sinus rhythm mECGs within & PLUSMN;0-2 days, & PLUSMN;3-7 days, and & PLUSMN;8-30 days from AF events to deter-mine the optimal screening window. Finally, we tested our model on mECGs from before an AF event to determine whether AF can be predicted prospectively.RESULTS We included 73,861 users with 267,614 mECGs (mean age 58.14 years; 35% women). Users with paroxysmal AF contributed 60.15% of mECGs. Model performance on the test set comprising control and study samples across all windows of interest showed an area under the curve (AUC) score of 0.760 (95% confidence inter-val [CI] 0.759-0.760), sensitivity of 0.703 (95% CI 0.700-0.705), specificity of 0.684 (95% CI 0.678-0.685), and accuracy of 69.4% (95% CI 0.692-0.700). Model performance was better on & PLUSMN;0-2 day samples (sensitivity 0.711; 95% CI 0.709-0.713) and worse on the & PLUSMN;8-30 day window (sensitivity 0.688; 95% CI 0.685- 0.690), with performance on the & PLUSMN;3-7 day window falling in be-tween (sensitivity 0.708; 95% CI 0.704-0.710).CONCLUSION Neural networks can predict AF using a widely scal-able and cost-effective mobile technology prospectively and retro-spectively.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [21] Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
    Goto, Shinichi
    Mahara, Keitaro
    Beussink-Nelson, Lauren
    Ikura, Hidehiko
    Katsumata, Yoshinori
    Endo, Jin
    Gaggin, Hanna K.
    Shah, Sanjiv J.
    Itabashi, Yuji
    MacRae, Calum A.
    Deo, Rahul C.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [22] QTNet Predicting Drug-Induced QT Prolongation With Artificial Intelligence-Enabled Electrocardiograms
    Zhang, Hao
    Tarabanis, Constantine
    Jethani, Neil
    Goldstein, Mark
    Smith, Silas
    Chinitz, Larry
    Ranganath, Rajesh
    Aphinyanaphongs, Yindalon
    Jankelson, Lior
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2024, 10 (05) : 956 - 966
  • [23] Detection of Left Atrial Myopathy Using Artificial Intelligence-Enabled Electrocardiography
    Verbrugge, Frederik H.
    Reddy, Yogesh N. V.
    Attia, Zachi I.
    Friedman, Paul A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Kapa, Suraj
    Borlaug, Barry A.
    CIRCULATION-HEART FAILURE, 2022, 15 (01) : E008176
  • [24] Effect of Graves' Disease on Female Probability Derived from Artificial Intelligence-Enabled Electrocardiograms in Women
    Naser, Jwan A.
    Attia, Zachi
    Pislaru, Sorin
    Stan, Marius
    Noseworthy, Peter A.
    Friedman, Paul
    Lin, Grace
    CIRCULATION, 2021, 144
  • [25] Artificial Intelligence-Enabled Science Poetry
    Kirmani, Ahmad R.
    ACS ENERGY LETTERS, 2022, 8 (01) : 574 - 576
  • [26] Artificial intelligence-enabled healthcare delivery
    Reddy, Sandeep
    Fox, John
    Purohit, Maulik P.
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 2019, 112 (01) : 22 - 28
  • [27] Artificial Intelligence-Enabled ECG Algorithm for the Prediction of Coronary Artery Calcification
    Han, Changho
    Kang, Ki-Woon
    Kim, Tae Young
    Uhm, Jae-Sun
    Park, Je-Wook
    Jung, In Hyun
    Kim, Minkwan
    Bae, SungA
    Lim, Hong-Seok
    Yoon, Dukyong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [28] Artificial intelligence-enabled electrocardiography contributes to hyperthyroidism detection and outcome prediction
    Chin Lin
    Feng-Chih Kuo
    Tom Chau
    Jui-Hu Shih
    Chin-Sheng Lin
    Chien-Chou Chen
    Chia-Cheng Lee
    Shih-Hua Lin
    Communications Medicine, 4 (1):
  • [29] Early Prediction of Pulmonary Hypertension Using Artificial Intelligence-enabled Electrocardiogram
    Luo, C. J.
    Qiu, H.
    Gong, S.
    Zhao, Q.
    Li, H.
    Yang, J.
    Chen, H.
    Niu, D.
    Wang, L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [30] Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial
    Yao, Xiaoxi
    Rushlow, David R.
    Inselman, Jonathan W.
    McCoy, Rozalina G.
    Thacher, Thomas D.
    Behnken, Emma M.
    Bernard, Matthew E.
    Rosas, Steven L.
    Akfaly, Abdulla
    Misra, Artika
    Molling, Paul E.
    Krien, Joseph S.
    Foss, Randy M.
    Barry, Barbara A.
    Siontis, Konstantinos C.
    Kapa, Suraj
    Pellikka, Patricia A.
    Lopez-Jimenez, Francisco
    Attia, Zachi I.
    Shah, Nilay D.
    Friedman, Paul A.
    Noseworthy, Peter A.
    NATURE MEDICINE, 2021, 27 (05) : 815 - +