Short-term Load Forecasting with Distributed Long Short-Term Memory

被引:2
|
作者
Dong, Yi [1 ]
Chen, Yang [2 ]
Zhao, Xingyu [1 ]
Huang, Xiaowei [1 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool, Merseyside, England
[2] Suzhou SeeEx Technol Co Ltd, Dept R&D, Suzhou, Jiangsu, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
short-term load forecasting; long short term memory; distributed learning; consensus; multi-agent system; NEURAL-NETWORK;
D O I
10.1109/ISGT51731.2023.10066368
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the employment of smart meters, massive data on consumer behaviour can be collected by retailers. From the collected data, the retailers may obtain the household profile information and implement demand response. While retailers prefer to acquire a model as accurate as possible among different customers, there are two major challenges. First, different retailers in the retail market do not share their consumer's electricity consumption data as these data are regarded as their assets, which has led to the problem of data island. Second, the electricity load data are highly heterogeneous since different retailers may serve various consumers. To this end, a fully distributed short-term load forecasting framework based on a consensus algorithm and Long Short-Term Memory (LSTM) is proposed, which may protect the customer's privacy and satisfy the accurate load forecasting requirement. Specifically, a fully distributed learning framework is exploited for distributed training, and a consensus technique is applied to meet confidential privacy. Case studies show that the proposed method has comparable performance with centralised methods regarding the accuracy, but the proposed method shows advantages in training speed and data privacy.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms
    Moradzadeh, Arash
    Zakeri, Sahar
    Shoaran, Maryam
    Mohammadi-Ivatloo, Behnam
    Mohammadi, Fazel
    SUSTAINABILITY, 2020, 12 (17)
  • [22] A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron
    Xie, Yuhong
    Ueda, Yuzuru
    Sugiyama, Masakazu
    ENERGIES, 2021, 14 (18)
  • [23] An Effective Short-Term Load Forecasting Methodology Using Convolutional Long Short Term Memory Network
    Rafi, Shafiul Hasan
    Nahid-Al Masood
    Deeba, Shohana Rahman
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 278 - 281
  • [24] Short-Term Solar Power Forecasting and Uncertainty Analysis Using Long and Short-Term Memory
    Zhang, Wei
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (12) : 1948 - 1955
  • [25] Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network
    Frank, Corinna
    Russwurm, Marc
    Fluixa-Sanmartin, Javier
    Tuia, Devis
    FRONTIERS IN WATER, 2023, 5
  • [26] Prediction of Short-term Load of Microgrid Based on Multivariable and Multistep Long Short-term Memory
    Li, Dashuang
    SENSORS AND MATERIALS, 2022, 34 (04) : 1275 - 1285
  • [27] SHORT-TERM LOAD FORECASTING BASED ON IMPROVED PARTICLE SWARM OPTIMISATION AND LONG SHORT-TERM MEMORY NETWORK1
    Yan, Qingyou
    Wang, Yonghua
    Qin, Guangyu
    Zhu, Jingyao
    Zidonis, Zilvinas
    TRANSFORMATIONS IN BUSINESS & ECONOMICS, 2021, 20 (01): : 154 - 177
  • [28] A decomposition-based approximate entropy cooperation long short-term memory ensemble model for short-term load forecasting
    Huang, Jiehui
    Li, Chunquan
    Huang, Zhengyu
    Liu, Peter X.
    ELECTRICAL ENGINEERING, 2022, 104 (03) : 1515 - 1525
  • [29] Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm
    Zhu, Qingyun
    Zeng, Shunqi
    Chen, Minghui
    Wang, Fei
    Zhang, Zhen
    ELECTRONICS, 2024, 13 (15)
  • [30] A decomposition-based approximate entropy cooperation long short-term memory ensemble model for short-term load forecasting
    Jiehui Huang
    Chunquan Li
    Zhengyu Huang
    Peter X. Liu
    Electrical Engineering, 2022, 104 : 1515 - 1525