FUSING SENTINEL-1 WITH CYGNSS TO ACCOUNT FOR VEGETATION EFFECTS IN SOIL MOISTURE RETRIEVALS

被引:0
|
作者
Bozdag, Ege [1 ]
Senyurek, Volkan [2 ]
Nabi, M. M. [2 ]
Kurum, Mehmet [2 ]
Gurbuz, Ali Cafer [2 ]
机构
[1] Bogazici Univ, Istanbul, Turkiye
[2] Mississippi State Univ, Mississippi State, MS USA
关键词
CYGNSS; MODIS; SENTINEL-1; Soil moisture;
D O I
10.1109/IGARSS52108.2023.10281528
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Satellite-based remote sensing observations play an important role in retrieving soil moisture over the earth's surface. NASA's Cyclone Global Navigation Satellite System (CYGNSS) mission has gained attention as it uses the Global Navigation Satellite System (GNSS) Reflectometry (GNSSR) which can provide higher spatial and temporal resolution. Research is going on to improve retrieval algorithms using CYGNSS observation. In addition to the CYGNSS observations, different land surface products are leveraged to characterize the underlying surface conditions. The most commonly used features are from the Normalized Difference Vegetation Index (NDVI) and the Vegetation Water Content (VWC) from Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. Since the MODIS satellite operates on optical bands that can be greatly affected by cloud coverage, this study proposes using the SENTINEL-1 satellite which offers all-weather, day, and night measurement capability. This study utilized the SENTINEL-1 cross ratio of VH/VV as an alternative to MODIS-based vegetation indices. The results of the study showed that the SENTINEL-1 cross ratio of VH/VV can be significantly useful in CYGNSS-based SM retrieval models by including the effect of vegetation.
引用
收藏
页码:2693 / 2696
页数:4
相关论文
共 50 条
  • [41] Soil Moisture Monitoring at Kilometer Scale: Assimilation of Sentinel-1 Products in ISBA
    Rojas-Munoz, Oscar
    Calvet, Jean-Christophe
    Bonan, Bertrand
    Baghdadi, Nicolas
    Meurey, Catherine
    Napoly, Adrien
    Wigneron, Jean-Pierre
    Zribi, Mehrez
    REMOTE SENSING, 2023, 15 (17)
  • [42] Soil Moisture Retrieval in Bare Agricultural Areas Using Sentinel-1 Images
    Ettalbi, Mouad
    Baghdadi, Nicolas
    Garambois, Pierre-Andre
    Bazzi, Hassan
    Ferreira, Emmanuel
    Zribi, Mehrez
    REMOTE SENSING, 2023, 15 (14)
  • [43] Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
    Lievens, H.
    Reichle, R. H.
    Liu, Q.
    De Lannoy, G. J. M.
    Dunbar, R. S.
    Kim, S. B.
    Das, N. N.
    Cosh, M.
    Walker, J. P.
    Wagner, W.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (12) : 6145 - 6153
  • [44] Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation
    Paloscia, S.
    Pettinato, S.
    Santi, E.
    Notarnicola, C.
    Pasolli, L.
    Reppucci, A.
    REMOTE SENSING OF ENVIRONMENT, 2013, 134 : 234 - 248
  • [45] On the potential of Sentinel-1 for sub-field scale soil moisture monitoring
    van Hateren, T. C.
    Chini, M.
    Matgen, P.
    Pulvirenti, L.
    Pierdicca, N.
    Teuling, A. J.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 120
  • [46] Estimation of Sentinel-1 derived soil moisture using modified Dubois model
    Settu, Prabhavathy
    Ramaiah, Mangayarkarasi
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024, 26 (11) : 29677 - 29693
  • [47] EXTENDED ALPHA APPROXIMATION METHOD FOR THE RETRIEVAL OF SOIL MOISTURE UNDER DYNAMIC VEGETATION BY MULTI-INCIDENCE ANGLE SENTINEL-1
    Mengen, David
    Balenzano, Anna
    Jagdhuber, Thomas
    Mattia, Francesco
    Vereecken, Harry
    Montzka, Carsten
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2649 - 2652
  • [48] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
    Attarzadeh, Reza
    Amini, Jalal
    Notarnicola, Claudia
    Greifeneder, Felix
    REMOTE SENSING, 2018, 10 (08)
  • [49] High resolution mapping of soil moisture in agriculture based on Sentinel-1 interferometric data
    Conde, Vasco
    Catalao, Joao
    Nico, Giovanni
    Benevides, Pedro
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [50] Coherent and Incoherent Change Detection for Soil Moisture Retrieval From Sentinel-1 Data
    Palmisano, Davide
    Satalino, Giuseppe
    Balenzano, Anna
    Mattia, Francesco
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19