FUSING SENTINEL-1 WITH CYGNSS TO ACCOUNT FOR VEGETATION EFFECTS IN SOIL MOISTURE RETRIEVALS

被引:0
|
作者
Bozdag, Ege [1 ]
Senyurek, Volkan [2 ]
Nabi, M. M. [2 ]
Kurum, Mehmet [2 ]
Gurbuz, Ali Cafer [2 ]
机构
[1] Bogazici Univ, Istanbul, Turkiye
[2] Mississippi State Univ, Mississippi State, MS USA
关键词
CYGNSS; MODIS; SENTINEL-1; Soil moisture;
D O I
10.1109/IGARSS52108.2023.10281528
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Satellite-based remote sensing observations play an important role in retrieving soil moisture over the earth's surface. NASA's Cyclone Global Navigation Satellite System (CYGNSS) mission has gained attention as it uses the Global Navigation Satellite System (GNSS) Reflectometry (GNSSR) which can provide higher spatial and temporal resolution. Research is going on to improve retrieval algorithms using CYGNSS observation. In addition to the CYGNSS observations, different land surface products are leveraged to characterize the underlying surface conditions. The most commonly used features are from the Normalized Difference Vegetation Index (NDVI) and the Vegetation Water Content (VWC) from Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. Since the MODIS satellite operates on optical bands that can be greatly affected by cloud coverage, this study proposes using the SENTINEL-1 satellite which offers all-weather, day, and night measurement capability. This study utilized the SENTINEL-1 cross ratio of VH/VV as an alternative to MODIS-based vegetation indices. The results of the study showed that the SENTINEL-1 cross ratio of VH/VV can be significantly useful in CYGNSS-based SM retrieval models by including the effect of vegetation.
引用
收藏
页码:2693 / 2696
页数:4
相关论文
共 50 条
  • [31] Remote sensing of vegetation and soil moisture content in Atlantic humid mountains with Sentinel-1 and 2 satellite sensor data
    Monteiro, Antonio T.
    Arenas-Castro, Salvador
    Punalekar, Suvarna M.
    Cunha, Mario
    Mendes, Ines
    Giamberini, Mariasilvia
    da Costa, Eduarda Marques
    Fava, Francesco
    Lucas, Richard
    ECOLOGICAL INDICATORS, 2024, 163
  • [32] Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression
    Ann-Kathrin Holtgrave
    Michael Förster
    Felix Greifeneder
    Claudia Notarnicola
    Birgit Kleinschmit
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, 86 : 85 - 101
  • [33] A modified first-order vegetation model for soil moisture retrieval in wheat fields using Sentinel-1 data
    Li, Yan
    Zhang, Chengcai
    Heng, Weidong
    Yang, Feng
    Liu, Jisheng
    DESALINATION AND WATER TREATMENT, 2021, 241 : 340 - 349
  • [34] HIGH RESOLUTION MAPPING OF VEGETATION BIOMASS AND SOIL MOISTURE BY USING AMSR2, SENTINEL-1 AND MACHINE LEARNING
    Santi, E.
    Baroni, F.
    Fontanelli, G.
    Lapini, A.
    Palchetti, E.
    Paloscia, S.
    Pampaloni, P.
    Pettinato, S.
    Pilia, S.
    Ramat, G.
    Santurri, L.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4943 - 4946
  • [35] Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression
    Holtgrave, Ann-Kathrin
    Foerster, Michael
    Greifeneder, Felix
    Notarnicola, Claudia
    Kleinschmit, Birgit
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2018, 86 (02): : 85 - 101
  • [36] FIELD SCALE SOIL MOISTURE FROM TIME SERIES OF SENTINEL-1 & SENTINEL-2
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Palmisano, Davide
    D'Addabbo, Annarita
    Lovergine, Francesco
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 176 - 179
  • [37] A preliminary view of the CYGNSS soil moisture-vegetation activity linkage
    Yang, Ting
    Cong, Nan
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2023, 6
  • [38] On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture
    Santi, E.
    Paloscia, S.
    Pettinato, S.
    Brocca, L.
    Ciabatta, L.
    Entekhabi, D.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 65 : 114 - 123
  • [39] A model for downscaling SMOS soil moisture using Sentinel-1 SAR data
    Li, Junhua
    Wang, Shusen
    Gunn, Grant
    Joosse, Pamela
    Russell, Hazen A. J.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 72 : 109 - 121
  • [40] Assessment of Carbon Flux and Soil Moisture in Wetlands Applying Sentinel-1 Data
    Dabrowska-Zielinska, Katarzyna
    Budzynska, Maria
    Tomaszewska, Monika
    Malinska, Alicja
    Gatkowska, Martyna
    Bartold, Maciej
    Malek, Iwona
    REMOTE SENSING, 2016, 8 (09):