A class of constacyclic codes are generalized Reed-Solomon codes

被引:0
|
作者
Liu, Hongwei [1 ]
Liu, Shengwei [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic codes; GRS codes; MDS codes; Schur square;
D O I
10.1007/s10623-023-01294-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed-Solomon (GRS) codes. The square C-2 of a linear code C is the linear code spanned by the component-wise products of every pair of codewords in C. For an MDS code C, it is convenient to determine whether C is a GRS code by determining the dimension of C-2. In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, we provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS.
引用
收藏
页码:4143 / 4151
页数:9
相关论文
共 50 条
  • [31] Reed-Solomon convolutional codes
    Gluesing-Luerssen, H
    Schmale, W
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 676 - 679
  • [32] On Determining Deep Holes of Generalized Reed-Solomon Codes
    Zhuang, Jincheng
    Cheng, Qi
    Li, Jiyou
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 199 - 207
  • [33] Distinguishing and Recovering Generalized Linearized Reed-Solomon Codes
    Hoermann, Felicitas
    Bartz, Hannes
    Horlemann, Anna-Lena
    CODE-BASED CRYPTOGRAPHY, CBCRYPTO 2022, 2023, 13839 : 1 - 20
  • [34] On Twisted Generalized Reed-Solomon Codes With l Twists
    Gu, Haojie
    Zhang, Jun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (01) : 145 - 153
  • [35] DECODING OF REED-SOLOMON CODES
    MANDELBAUM, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (06) : 707 - +
  • [36] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5684 - 5698
  • [37] Twisted Reed-Solomon Codes
    Beelen, Peter
    Puchinger, Sven
    Rosenkilde, Johan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3047 - 3061
  • [38] GENERALIZED SYNDROME POLYNOMIALS FOR DECODING REED-SOLOMON CODES
    ARAKI, K
    FUJITA, I
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1992, E75A (08) : 1026 - 1029
  • [39] New Galois hulls of generalized Reed-Solomon codes
    Wu, Yansheng
    Li, Chengju
    Yang, Shangdong
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 83
  • [40] Quantum Reed-Solomon codes
    Grassl, M
    Geiselmann, W
    Beth, T
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 231 - 244