A class of constacyclic codes are generalized Reed-Solomon codes

被引:0
|
作者
Liu, Hongwei [1 ]
Liu, Shengwei [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic codes; GRS codes; MDS codes; Schur square;
D O I
10.1007/s10623-023-01294-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed-Solomon (GRS) codes. The square C-2 of a linear code C is the linear code spanned by the component-wise products of every pair of codewords in C. For an MDS code C, it is convenient to determine whether C is a GRS code by determining the dimension of C-2. In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, we provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS.
引用
收藏
页码:4143 / 4151
页数:9
相关论文
共 50 条
  • [21] Decoding Generalized Concatenated Codes Using Interleaved Reed-Solomon Codes
    Senger, Christian
    Sidorenko, Vladimir
    Bossert, Martin
    Zyablov, Victor
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1808 - +
  • [22] Quantum convolutional codes derived from generalized reed-solomon codes
    Aly, Salah A.
    Klappenecker, Andreas
    Sarvepalli, Pradeep Kiran
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 821 - 825
  • [23] Generalized LDPC codes with Reed-Solomon and BCH codes as component codes for binary channels
    Miladinovic, N
    Fossorier, M
    GLOBECOM '05: IEEE Global Telecommunications Conference, Vols 1-6: DISCOVERY PAST AND FUTURE, 2005, : 1239 - 1244
  • [24] Hulls of Generalized Reed-Solomon Codes via Goppa Codes and Their Applications to Quantum Codes
    Gao, Yanyan
    Yue, Qin
    Huang, Xinmei
    Zhang, Jun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6619 - 6626
  • [25] Graph codes with Reed-Solomon component codes
    Hoholdt, Tom
    Justesen, Jorn
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2022 - +
  • [26] On the concatenation of turbo codes and Reed-Solomon codes
    Zhou, GC
    Lin, TS
    Wang, WZ
    Lindsey, WC
    Lai, D
    Chen, E
    Santoru, J
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2134 - 2138
  • [27] On Determining Deep Holes of Generalized Reed-Solomon Codes
    Cheng, Qi
    Li, Jiyou
    Zhuang, Jincheng
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 100 - 110
  • [28] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 216 - 226
  • [29] CONVOLUTIONAL REED-SOLOMON CODES
    EBERT, PM
    TONG, SY
    BELL SYSTEM TECHNICAL JOURNAL, 1969, 48 (03): : 729 - +
  • [30] Balanced Reed-Solomon Codes
    Halbawi, Wael
    Liu, Zihan
    Hassibi, Babak
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 935 - 939