Application of graph frequency attention convolutional neural networks in depression treatment response

被引:1
|
作者
Lu, Zihe [1 ]
Wang, Jialin [1 ]
Wang, Fengqin [1 ]
Wu, Zhoumin [1 ]
机构
[1] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi, Peoples R China
来源
FRONTIERS IN PSYCHIATRY | 2023年 / 14卷
关键词
classification; depression treatment response; EEG; graph convolutional neural networks; frequency attention; SLEEP;
D O I
10.3389/fpsyt.2023.1244208
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Depression, a prevalent global mental health disorder, necessitates precise treatment response prediction for the improvement of personalized care and patient prognosis. The Graph Convolutional Neural Networks (GCNs) have emerged as a promising technique for handling intricate signals and classification tasks owing to their end-to-end neural architecture and nonlinear processing capabilities. In this context, this article proposes a model named the Graph Frequency Attention Convolutional Neural Network (GFACNN). Primarily, the model transforms the EEG signals into graphs to depict the connections between electrodes and brain regions, while integrating a frequency attention module to accentuate brain rhythm information. The proposed approach delves into the application of graph neural networks in the classification of EEG data, aiming to evaluate the response to antidepressant treatment and discern between treatment-resistant and treatment-responsive cases. Experimental results obtained from an EEG dataset at Peking University People's Hospital demonstrate the notable performance of GFACNN in distinguishing treatment responses among depression patients, surpassing deep learning methodologies including CapsuleNet and GoogLeNet. This highlights the efficacy of graph neural networks in leveraging the connections within EEG signal data. Overall, GFACNN exhibits potential for the classification of depression EEG signals, thereby potentially aiding clinical diagnosis and treatment.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Visualization of Convolutional Neural Networks with Attention Mechanism
    Yuan, Meng
    Tie, Bao
    Lin, Dawei
    HUMAN CENTERED COMPUTING, HCC 2021, 2022, 13795 : 82 - 93
  • [42] Lipschitz Normalization for Self-Attention Layers with Application to Graph Neural Networks
    Dasoulas, George
    Scaman, Kevin
    Virmaux, Aladin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [43] Graph Attention Networks for Neural Social Recommendation
    Mu, Nan
    Zha, Daren
    He, Yuanye
    Tang, Zhihao
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1320 - 1327
  • [44] Understanding Attention and Generalization in Graph Neural Networks
    Knyazev, Boris
    Taylor, Graham W.
    Amer, Mohamed R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [45] Residual convolutional graph neural network with subgraph attention pooling
    Duan, Yutai
    Wang, Jianming
    Ma, Haoran
    Sun, Yukuan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (04) : 653 - 663
  • [46] Residual Convolutional Graph Neural Network with Subgraph Attention Pooling
    Yutai Duan
    Jianming Wang
    Haoran Ma
    Yukuan Sun
    TsinghuaScienceandTechnology, 2022, 27 (04) : 653 - 663
  • [47] Attention-based Frequency Adaptation Graph Convolutional Network
    Zhang, Yuhan
    Xu, Wei
    Li, Xin
    Chen, Weichang
    Yan, Hui
    IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SYSTEMS SCIENCE AND ENGINEERING (IEEE RASSE 2021), 2021,
  • [48] Graph Convolutional Networks for Drug Response Prediction
    Tuan Nguyen
    Giang T T Nguyen
    Nguyen, Thin
    Le, Duc-Hau
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 146 - 154
  • [49] A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks
    Ingole, Vikram S.
    Kshirsagar, Ujwala A.
    Singh, Vikash
    Yadav, Manish Varun
    Krishna, Bipin
    Kumar, Roshan
    COMPUTATION, 2025, 13 (01)
  • [50] Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response
    Patel, Ravi
    Safta, Cosmin
    Jones, Reese E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432