Application of graph frequency attention convolutional neural networks in depression treatment response

被引:1
|
作者
Lu, Zihe [1 ]
Wang, Jialin [1 ]
Wang, Fengqin [1 ]
Wu, Zhoumin [1 ]
机构
[1] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi, Peoples R China
来源
FRONTIERS IN PSYCHIATRY | 2023年 / 14卷
关键词
classification; depression treatment response; EEG; graph convolutional neural networks; frequency attention; SLEEP;
D O I
10.3389/fpsyt.2023.1244208
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Depression, a prevalent global mental health disorder, necessitates precise treatment response prediction for the improvement of personalized care and patient prognosis. The Graph Convolutional Neural Networks (GCNs) have emerged as a promising technique for handling intricate signals and classification tasks owing to their end-to-end neural architecture and nonlinear processing capabilities. In this context, this article proposes a model named the Graph Frequency Attention Convolutional Neural Network (GFACNN). Primarily, the model transforms the EEG signals into graphs to depict the connections between electrodes and brain regions, while integrating a frequency attention module to accentuate brain rhythm information. The proposed approach delves into the application of graph neural networks in the classification of EEG data, aiming to evaluate the response to antidepressant treatment and discern between treatment-resistant and treatment-responsive cases. Experimental results obtained from an EEG dataset at Peking University People's Hospital demonstrate the notable performance of GFACNN in distinguishing treatment responses among depression patients, surpassing deep learning methodologies including CapsuleNet and GoogLeNet. This highlights the efficacy of graph neural networks in leveraging the connections within EEG signal data. Overall, GFACNN exhibits potential for the classification of depression EEG signals, thereby potentially aiding clinical diagnosis and treatment.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] SEA: Graph Shell Attention in Graph Neural Networks
    Frey, Christian M. M.
    Ma, Yunpu
    Schubert, Matthias
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 326 - 343
  • [22] Attention Guided Graph Convolutional Networks for Relation Extraction
    Guo, Zhijiang
    Zhang, Yan
    Lu, Wei
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 241 - 251
  • [23] Graph Convolutional Networks with Motif-based Attention
    Lee, John Boaz
    Rossi, Ryan A.
    Kong, Xiangnan
    Kim, Sungchul
    Koh, Eunyee
    Rao, Anup
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 499 - 508
  • [24] Attention Based Graph Convolutional Networks for Trajectory Prediction
    Chen, Jianxiao
    Chen, Guang
    Li, Zhijun
    Wu, Ya
    Knoll, Alois
    2021 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2021), 2021, : 852 - 857
  • [25] Transfer Entropy in Graph Convolutional Neural Networks
    Moldovan, Adrian
    Cataron, Angel
    Andonie, Azvan
    2024 28TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION, IV 2024, 2024, : 207 - 213
  • [26] Anomaly detection with convolutional Graph Neural Networks
    Oliver Atkinson
    Akanksha Bhardwaj
    Christoph Englert
    Vishal S. Ngairangbam
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [27] Universal Readout for Graph Convolutional Neural Networks
    Navarin, Nicolo
    Dinh Van Tran
    Sperduti, Alessandro
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [28] Transferability of spectral graph convolutional neural networks
    Levie, Ron
    Huang, Wei
    Bucci, Lorenzo
    Bronstein, Michael
    Kutyniok, Gitta
    Journal of Machine Learning Research, 2021, 22
  • [29] Gated Graph Convolutional Recurrent Neural Networks
    Ruiz, Luana
    Gama, Fernando
    Ribeiro, Alejandro
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [30] Graph Neural Networks With Convolutional ARMA Filters
    Bianchi, Filippo Maria
    Grattarola, Daniele
    Livi, Lorenzo
    Alippi, Cesare
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3496 - 3507