The prescribed Gauduchon scalar curvature problem in almost Hermitian geometry

被引:2
|
作者
Li, Yuxuan [1 ]
Zhou, Wubin [1 ]
Zhou, Xianchao [2 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
almost Hermitian manifold; Gauduchon connection; prescribed scalar curvature problem;
D O I
10.1007/s11425-023-2179-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the prescribed Gauduchon scalar curvature problem on almost Hermitian manifolds. By deducing the expression of the Gauduchon scalar curvature under the conformal variation, we reduce the problem to solving a semi-linear partial differential equation with exponential nonlinearity. Using the super- and sub-solutions method, we show that the existence of the solution to this semi-linear equation depends on the sign of a constant associated with the Gauduchon degree. When the sign is negative, we give both necessary and sufficient conditions such that a prescribed function is the Gauduchon scalar curvature of a conformal Hermitian metric. Besides, this paper recovers the Chern-Yamabe problem, the Lichnerowicz-Yamabe problem, and the Bismut-Yamabe problem.
引用
收藏
页码:2357 / 2372
页数:16
相关论文
共 50 条
  • [31] Scalar curvature rigidity of almost Hermitian manifolds which are asymptotic to CHm
    Listing, Mario
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (04) : 367 - 382
  • [32] On the prescribed scalar curvature problem on 4-manifolds
    BenAyed, M
    Chen, YS
    Chtioui, H
    Hammami, M
    DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) : 633 - 677
  • [33] Methods of algebraic topology for the prescribed scalar curvature problem
    Aubin, T
    Bahri, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06): : 525 - 549
  • [34] Doubling the equatorial for the prescribed scalar curvature problem on SN
    Duan, Lipeng
    Musso, Monica
    Wei, Suting
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (03):
  • [35] On the Chen–Lin Conjecture for the Prescribed Scalar Curvature Problem
    Hichem Chtioui
    The Journal of Geometric Analysis, 2023, 33
  • [36] PRESCRIBED SCALAR CURVATURE
    AUBIN, T
    BULLETIN DES SCIENCES MATHEMATIQUES, 1991, 115 (02): : 125 - 131
  • [37] PRESCRIBED SCALAR CURVATURE
    RAUZY, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (03): : 273 - 276
  • [38] Topological tools for the prescribed scalar curvature problem on S n
    Abuzaid, Dina A.
    Ben Mahmoud, Randa
    Chtioui, Hichem
    Rigane, Afef
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (12): : 1829 - 1839
  • [39] On the prescribed scalar curvature problem in RN, local uniqueness and periodicity
    Deng, Yinbin
    Lin, Chang-Shou
    Yan, Shusen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1013 - 1044
  • [40] On the Chen-Lin Conjecture for the Prescribed Scalar Curvature Problem
    Chtioui, Hichem
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)