Self-healing capability of engineered cementitious composites with calcium aluminate cement

被引:7
|
作者
Zokaei, Shahin [1 ]
Siad, Hocine [1 ]
Lachemi, Mohamed [1 ]
Mahmoodi, Obaid [1 ]
Sahmaran, Mustafa [2 ]
机构
[1] Toronto Metropolitan Univ, Dept Civil Engn, Toronto, ON, Canada
[2] Hacettepe Univ, Dept Civil Engn, Ankara, Turkiye
关键词
Calcium aluminate cement; Engineered cementitious composites; Sustainability; Self-healing; Conversion; Cracking; FLY-ASH; MECHANICAL-PROPERTIES; CORROSION; RESISTANCE; STEEL; ECC;
D O I
10.1016/j.conbuildmat.2023.133051
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The reduced heating temperatures required for producing calcium aluminate cement (CAC) make it highly suitable for reducing CO2 emissions in engineered cementitious composites (ECCs) known with their significant amount of cement. However, it is not clear to what extent this can influence the advanced mechanical and selfhealing ability of control ECC, especially with the risk of conversion in CAC reaction products. This study investigates the self-healing capability of ECCs produced using CAC instead of conventional ordinary Portland cement (OPC). It also assesses the impact of incorporating fly ash (FA) into CAC-ECC blends at different FA/CAC ratios. In addition to the mechanical characterisation of sound specimens, flexural properties, cracking behavior, ultra-sonic pulse velocity (UPV) and rapid chloride permeability test (RCPT) were performed on preloaded OPCand CAC-ECCs. The study also analyzed the microstructural changes of self-healing products associated with the high alumina content of CAC. The results show that CAC can be used to produce high mechanical strengths ECCs, with more than 34% and 7% higher compressive and flexural strengths respectively than those of ECC-CTL at early age, though the addition of FA was important to reach improved patterns of mechanical properties at advanced ages. In addition, significant improvements were recorded for the recovery rates of CAC-ECCs, reaching more than 29% for flexural strengths, 11% for UPV and 75% for RCPT than the ECC-CTL. The selfhealing products characterized with SEM-EDS confirmed the occurrence of conversion when FA was not included in CAC-ECCs, nevertheless with limited effect on the self-healing efficiency of these mixtures.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Self-healing of microcracks in Engineered Cementitious Composites under sulfate and chloride environment
    Liu, Hezhi
    Zhang, Qian
    Gu, Chongshi
    Su, Huaizhi
    Li, Victor
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 153 : 948 - 956
  • [32] Self-healing performance of aged cementitious composites
    Yildirim, Gurkan
    Khiavi, Arash Hamidzadeh
    Yesilmen, Seda
    Sahmaran, Mustafa
    CEMENT & CONCRETE COMPOSITES, 2018, 87 : 172 - 186
  • [33] Characteristics of Self-Healing Microcapsules for Cementitious Composites
    Qianjin Mao
    Xiaojuan Feng
    Peng Liang
    Rui Wang
    Ziming Wang
    Suping Cui
    Mingzhang Lan
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33 : 1108 - 1112
  • [34] Characteristics of Self-Healing Microcapsules for Cementitious Composites
    Mao Qianjin
    Feng Xiaojuan
    Liang Peng
    Wang Rui
    Wang Ziming
    Cui Suping
    Lan Mingzhang
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (05): : 1108 - 1112
  • [35] Characteristics of Self-Healing Microcapsules for Cementitious Composites
    毛倩瑾
    FENG Xiaojuan
    LIANG Peng
    WANG Rui
    WANG Ziming
    CUI Suping
    LAN Mingzhang
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2018, 33 (05) : 1108 - 1112
  • [36] Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites
    Qian, S. Z.
    Zhou, J.
    Schlangen, E.
    CEMENT & CONCRETE COMPOSITES, 2010, 32 (09): : 686 - 693
  • [37] Self-Healing Characterization of Engineered Cementitious Composite Materials
    Kan, Li-Li
    Shi, Hui-Sheng
    Sakulich, Aaron R.
    Li, Victor C.
    ACI MATERIALS JOURNAL, 2010, 107 (06) : 617 - 624
  • [38] Crack distribution and mechanical performance of self-healing of engineered cementitious composites (ECC) materials
    Kan, Li-Li
    Shi, Hui-Sheng
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2012, 15 (01): : 27 - 33
  • [39] Self-healing ability of Engineered Cementitious Composites (ECC) under different exposure environments
    Zhang, Zhigang
    Zhang, Qian
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 156 : 142 - 151
  • [40] Influence of limestone powder on mechanical, physical and self-healing behavior of Engineered Cementitious Composites
    Siad, Hocine
    Alyousif, Ahmed
    Keskin, Ozlem Kasap
    Keskin, Suleyman Bahadir
    Lachemi, Mohamed
    Sahmaran, Mustafa
    Hossain, Khandaker M. Anwar
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 99 : 1 - 10