Self-healing capability of engineered cementitious composites with calcium aluminate cement

被引:7
|
作者
Zokaei, Shahin [1 ]
Siad, Hocine [1 ]
Lachemi, Mohamed [1 ]
Mahmoodi, Obaid [1 ]
Sahmaran, Mustafa [2 ]
机构
[1] Toronto Metropolitan Univ, Dept Civil Engn, Toronto, ON, Canada
[2] Hacettepe Univ, Dept Civil Engn, Ankara, Turkiye
关键词
Calcium aluminate cement; Engineered cementitious composites; Sustainability; Self-healing; Conversion; Cracking; FLY-ASH; MECHANICAL-PROPERTIES; CORROSION; RESISTANCE; STEEL; ECC;
D O I
10.1016/j.conbuildmat.2023.133051
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The reduced heating temperatures required for producing calcium aluminate cement (CAC) make it highly suitable for reducing CO2 emissions in engineered cementitious composites (ECCs) known with their significant amount of cement. However, it is not clear to what extent this can influence the advanced mechanical and selfhealing ability of control ECC, especially with the risk of conversion in CAC reaction products. This study investigates the self-healing capability of ECCs produced using CAC instead of conventional ordinary Portland cement (OPC). It also assesses the impact of incorporating fly ash (FA) into CAC-ECC blends at different FA/CAC ratios. In addition to the mechanical characterisation of sound specimens, flexural properties, cracking behavior, ultra-sonic pulse velocity (UPV) and rapid chloride permeability test (RCPT) were performed on preloaded OPCand CAC-ECCs. The study also analyzed the microstructural changes of self-healing products associated with the high alumina content of CAC. The results show that CAC can be used to produce high mechanical strengths ECCs, with more than 34% and 7% higher compressive and flexural strengths respectively than those of ECC-CTL at early age, though the addition of FA was important to reach improved patterns of mechanical properties at advanced ages. In addition, significant improvements were recorded for the recovery rates of CAC-ECCs, reaching more than 29% for flexural strengths, 11% for UPV and 75% for RCPT than the ECC-CTL. The selfhealing products characterized with SEM-EDS confirmed the occurrence of conversion when FA was not included in CAC-ECCs, nevertheless with limited effect on the self-healing efficiency of these mixtures.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Self-healing capability of cementitious composites incorporating different supplementary cementitious materials
    Sahmaran, Mustafa
    Yildirim, Gurkan
    Erdem, Tahir K.
    CEMENT & CONCRETE COMPOSITES, 2013, 35 (01): : 89 - 101
  • [12] Analysis of Crack Microstructure, Self-Healing Products, and Degree of Self-Healing in Engineered Cementitious Composites
    Zhu, Yu
    Zhang, Zhao Cai
    Yao, Yan
    Guan, Xue Mao
    Yang, Ying Zi
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (06)
  • [13] A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material
    Wu, Min
    Johannesson, Bjorn
    Geiker, Mette
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 28 (01) : 571 - 583
  • [14] Mechanical, physical and durability performance of engineered cementitious composites prepared with calcium aluminate cement
    Zokaei, Shahin
    Siad, Hocine
    Lachemi, Mohamed
    Mahmoodi, Obaid
    Ozcelikci, Emircan
    Sahmaran, Mustafa
    ADVANCES IN CEMENT RESEARCH, 2024,
  • [15] Enhancing self-healing properties of engineered cementitious composites through the application of super-sulfated cement
    Zokaei, Shahin
    Siad, Hocine
    Lachemi, Mohamed
    Mahmoodi, Obaid
    Sahmaran, Mustafa
    MAGAZINE OF CONCRETE RESEARCH, 2024, 77 (1-2) : 42 - 55
  • [16] Influence of microcrack self-healing behavior on the permeability of Engineered Cementitious Composites
    Liu, Hezhi
    Zhang, Qian
    Gu, Chongshi
    Su, Huaizhi
    Li, Victor
    CEMENT & CONCRETE COMPOSITES, 2017, 82 : 14 - 22
  • [17] Quantification of self-healing in bacteria-based engineered cementitious composites
    Bhaskar, Sini
    Hossain, Khandaker M. Anwar
    Lachemi, Mohamed
    Wolfaardt, Gideon
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2023, 176 (04) : 171 - 184
  • [18] Quantification of self-healing in bacteria-based engineered cementitious composites
    Bhaskar, Sini
    Hossain, Khandaker M. Anwar M.
    Lachemi, Mohamed
    Wolfaardt, Gideon
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2020, 176 (04) : 171 - 184
  • [19] Effect of Sustained Flexural Loading on Self-Healing of Engineered Cementitious Composites
    Ozbay, Erdogan
    Sahmaran, Mustafa
    Yucel, Hasan E.
    Erdem, Tahir K.
    Lachemi, Mohamed
    Li, Victor C.
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2013, 11 (05) : 167 - 179
  • [20] Investigation of self-healing behavior of Engineered Cementitious Composites (ECC) materials
    Kan, Li-li
    Shi, Hui-sheng
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 29 : 348 - 356