Low-light image enhancement based on Retinex-Net with color restoration

被引:3
|
作者
Feng, Wei [1 ]
Wu, Guiming [1 ]
Zhou, Shiqi [1 ]
Li, Xingang [1 ]
机构
[1] Hubei Univ Technol, Sch Mech Engn, Hubei Key Lab Modern Mfg Qual Engn, Wuhan 430068, Peoples R China
关键词
ILLUMINATION;
D O I
10.1364/AO.491768
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Low-light images often suffer from a variety of degradation problems such as loss of detail, color distortions, and prominent noise. In this paper, the RetinexNet model and loss function with color restoration are proposed to reduce color distortion in low-light image enhancement. The model trains the decom-net and color recovery-net to achieve decomposition of low-light images and color restoration of reflected images, respectively. First, a convolutional neural network and the designed loss functions are used in the decom-net to decompose the low-light image pair into an optimal reflection image and illumination image as the input of the network, and the reflection image after normal light decomposition is taken as the label. Then, an end-to-end color recovery network with a simplified model and time complexity is learned and combined with the color recovery loss function to obtain the correction reflection map with higher perception quality, and gamma correction is applied to the decomposed illumination image. Finally, the corrected reflection image and the illumination image are synthesized to get the enhanced image. The experimental results show that the proposed network model has lower brightness-order-error (LOE) and natural image quality evaluator (NIQE) values, and the average LOE and NIQE values of the low-light dataset images can be reduced to 942 and 6.42, respectively, which significantly improves image quality compared with other low-light enhancement methods. Generally, our proposed method can effectively improve image illuminance and restore color information in the end-to-end learning process of low-light images.& COPY; 2023 Optica Publishing Group
引用
收藏
页码:6577 / 6584
页数:8
相关论文
共 50 条
  • [41] Structure-Based Low-Rank Retinex Model for Low-Light Image Enhancement
    Wang, Liqian
    Ge, Qi
    Shao, Wenze
    Wu, Pengfei
    Deng, Haisong
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [42] A simple illumination map estimation based on Retinex model for low-light image enhancement
    Tang, Shiqiang
    Li, Changli
    Pan, Xinxin
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [43] Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map
    Pan, Xinxin
    Li, Changli
    Pan, Zhigeng
    Yan, Jingwen
    Tang, Shiqiang
    Yin, Xinghui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [44] ILR-Net: Low-light image enhancement network based on the combination of iterative learning mechanism and Retinex theory
    Yin, Mohan
    Yang, Jianbai
    PLOS ONE, 2025, 20 (02):
  • [45] Low-Light Image Enhancement Based on Constraint Low-Rank Approximation Retinex Model
    Li, Xuesong
    Shang, Jianrun
    Song, Wenhao
    Chen, Jinyong
    Zhang, Guisheng
    Pan, Jinfeng
    SENSORS, 2022, 22 (16)
  • [46] Low-light Video Image Enhancement Based on Multiscale Retinex-like Algorithm
    Liu, Huijie
    Sun, Xiankun
    Han, Hua
    Cao, Wei
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3712 - 3715
  • [47] Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism
    Ma S.
    Pan W.
    Li N.
    Du S.
    Liu H.
    Xu B.
    Xu C.
    Li X.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (01) : 489 - 497
  • [48] Retinex based low-light image enhancement using guided filtering and variational framework
    Zhang Shi
    Tang Gui-jin
    Liu Xiao-hua
    Luo Su-huai
    Wang Da-dong
    OPTOELECTRONICS LETTERS, 2018, 14 (02) : 156 - 160
  • [49] Learning shrinkage fields for low-light image enhancement via Retinex
    Wu Q.
    Wang R.
    Ren W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (09): : 1711 - 1720
  • [50] Deep parametric Retinex decomposition model for low-light image enhancement
    Li, Xiaofang
    Wang, Weiwei
    Feng, Xiangchu
    Li, Min
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241