ILR-Net: Low-light image enhancement network based on the combination of iterative learning mechanism and Retinex theory

被引:0
|
作者
Yin, Mohan [1 ]
Yang, Jianbai [1 ]
机构
[1] Harbin Normal Univ, Sch Comp Sci & Informat Engn, Harbin, Heilongjiang, Peoples R China
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; MODEL;
D O I
10.1371/journal.pone.0314541
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Images captured in nighttime or low-light environments are often affected by external factors such as noise and lighting. Aiming at the existing image enhancement algorithms tend to overly focus on increasing brightness, while neglecting the enhancement of color and detailed features. This paper proposes a low-light image enhancement network based on a combination of iterative learning mechanisms and Retinex theory (defined as ILR-Net) to enhance both detail and color features simultaneously. Specifically, the network continuously learns local and global features of low-light images across different dimensions and receptive fields to achieve a clear and convergent illumination estimation. Meanwhile, the denoising process is applied to the reflection component after Retinex decomposition to enhance the image's rich color features. Finally, the enhanced image is obtained by concatenating the features along the channel dimension. In the adaptive learning sub-network, a dilated convolution module, U-Net feature extraction module, and adaptive iterative learning module are designed. These modules respectively expand the network's receptive field to capture multi-dimensional features, extract the overall and edge details of the image, and adaptively enhance features at different stages of convergence. The Retinex decomposition sub-network focuses on denoising the reflection component before and after decomposition to obtain a low-noise, clear reflection component. Additionally, an efficient feature extraction module-global feature attention is designed to address the problem of feature loss. Experiments were conducted on six common datasets and in real-world environments. The proposed method achieved PSNR and SSIM values of 23.7624dB and 0.8653 on the LOL dataset, and 26.8252dB and 0.7784 on the LOLv2-Real dataset, demonstrating significant advantages over other algorithms.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
    Yongqiang Chen
    Chenglin Wen
    Weifeng Liu
    Wei He
    Scientific Reports, 13
  • [2] A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
    Chen, Yongqiang
    Wen, Chenglin
    Liu, Weifeng
    He, Wei
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Retinex low-light image enhancement network based on attention mechanism
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4235 - 4255
  • [4] Retinex low-light image enhancement network based on attention mechanism
    Xinyu Chen
    Jinjiang Li
    Zhen Hua
    Multimedia Tools and Applications, 2023, 82 : 4235 - 4255
  • [5] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [6] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [7] Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism
    Ma S.
    Pan W.
    Li N.
    Du S.
    Liu H.
    Xu B.
    Xu C.
    Li X.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (01) : 489 - 497
  • [8] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [9] Low-light image enhancement based on Retinex-Net with color restoration
    Feng, Wei
    Wu, Guiming
    Zhou, Shiqi
    Li, Xingang
    APPLIED OPTICS, 2023, 62 (25) : 6577 - 6584
  • [10] Low-Light Image Enhancement Algorithm Based on Improved Retinex-Net
    Ou J.
    Hu X.
    Yang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (01): : 77 - 86