A depth iterative illumination estimation network for low-light image enhancement based on retinex theory

被引:5
|
作者
Chen, Yongqiang [1 ]
Wen, Chenglin [1 ,2 ]
Liu, Weifeng [2 ]
He, Wei [2 ]
机构
[1] Guangdong Univ Petrochem Technol, Sch Automat, Maoming 525000, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian 710021, Peoples R China
关键词
ADAPTIVE HISTOGRAM EQUALIZATION; QUALITY ASSESSMENT;
D O I
10.1038/s41598-023-46693-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Existing low-light image enhancement techniques face challenges in achieving high visual quality and computational efficiency, as well as in effectively removing noise and adjusting illumination in extremely dark scenes. To address these problems, in this paper, we propose an illumination enhancement network based on Retinex theory for fast and accurate brightening of images in low-illumination scenes. Two learning-based networks are carefully constructed: decomposition network and enhancement network. The decomposition network is responsible for decomposing the low-light input image into the initial reflectance and illumination map. The enhanced network includes two sub-modules: the illumination enhancement module and the reflection denoising module, which are used for efficient brightness enhancement and accurate reflectance. Specially, we have established a cascaded iterative lighting learning process and utilized weight sharing to conduct accurate illumination estimation. Additionally, unsupervised training losses are defined to improve the generalization ability of the model. The proposed illumination enhancement framework enables noise suppression and detail preservation of the final decomposition results. To establish the efficacy and superiority of the model, on the widely applicable LOL dataset, our approach achieves a significant 9.16% increase in PSNR compared to the classical Retinex-Net, and a remarkable enhancement of 19.26% compared to the latest SCI method.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A depth iterative illumination estimation network for low-light image enhancement based on retinex theory
    Yongqiang Chen
    Chenglin Wen
    Weifeng Liu
    Wei He
    Scientific Reports, 13
  • [2] A simple illumination map estimation based on Retinex model for low-light image enhancement
    Tang, Shiqiang
    Li, Changli
    Pan, Xinxin
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [3] Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map
    Pan, Xinxin
    Li, Changli
    Pan, Zhigeng
    Yan, Jingwen
    Tang, Shiqiang
    Yin, Xinghui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [4] A Joint Network for Low-Light Image Enhancement Based on Retinex
    Jiang, Yonglong
    Zhu, Jiahe
    Li, Liangliang
    Ma, Hongbing
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3241 - 3259
  • [5] ILR-Net: Low-light image enhancement network based on the combination of iterative learning mechanism and Retinex theory
    Yin, Mohan
    Yang, Jianbai
    PLOS ONE, 2025, 20 (02):
  • [6] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [7] Retinex low-light image enhancement network based on attention mechanism
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4235 - 4255
  • [8] Retinex low-light image enhancement network based on attention mechanism
    Xinyu Chen
    Jinjiang Li
    Zhen Hua
    Multimedia Tools and Applications, 2023, 82 : 4235 - 4255
  • [9] A Retinex-based network for image enhancement in low-light environments
    Wu, Ji
    Ding, Bing
    Zhang, Beining
    Ding, Jie
    PLOS ONE, 2024, 19 (05):
  • [10] The Retinex enhancement algorithm for low-light intensity image based on improved illumination map
    Weng, Ruidi
    Zhang, Ya
    Wu, Hanyang
    Wang, Weiyong
    Wang, Dongyun
    IET IMAGE PROCESSING, 2024, 18 (12) : 3381 - 3392