Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms

被引:1
|
作者
Wang, Hanyu [1 ,2 ,3 ]
Yang, Mingyu [1 ,3 ]
Zhang, Tao [1 ,2 ,3 ]
Tian, Dapeng [1 ,2 ,3 ]
Wang, Hao [1 ,2 ,3 ]
Yao, Dong [1 ,2 ,3 ]
Meng, Lingtong [1 ,2 ,3 ]
Shen, Honghai [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt, Key Lab Airborne Opt Imaging & Measurement, Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt, Fine Mech & Phys, Changchun 130033, Peoples R China
关键词
anomaly detection; attribute profile; genetic algorithms (GAs); feature selection; hyperspectral imagery (HSI); SPECTRAL-SPATIAL CLASSIFICATION; OPTIMAL FEATURE-SELECTION; IMAGES; REPRESENTATION; SEGMENTATION; STATISTICS;
D O I
10.3390/rs15041050
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anomaly detection is hampered by band redundancy and the restricted reconstruction ability of spectral-spatial information in hyperspectral remote sensing. A novel hyperspectral anomaly detection method integrating differential attribute profiles and genetic algorithms (DAPGA) is proposed to sufficiently extract the spectral-spatial features and automatically optimize the selection of the optimal features. First, a band selection method with cross-subspace combination is employed to decrease the spectral dimension and choose representative bands with rich information and weak correlation. Then, the differentials of attribute profiles are calculated by four attribute types and various filter parameters for multi-scale and multi-type spectral-spatial feature decomposition. Finally, the ideal discriminative characteristics are reserved and incorporated with genetic algorithms to cluster each differential attribute profile by dissimilarity assessment. Experiments run on a variety of genuine hyperspectral datasets including airport, beach, urban, and park scenes show that the effectiveness of the proposed algorithm has great improvement with existing state-of-the-art algorithms.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Target-to-Anomaly Conversion for Hyperspectral Anomaly Detection
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Integrating Genetic Algorithms and fuzzy c-means for anomaly detection
    Chimphlee, W
    Abdullah, AH
    Sap, MNM
    Chimphlee, S
    Srinoy, S
    INDICON 2005 PROCEEDINGS, 2005, : 575 - 579
  • [33] Anomaly detection in hyperspectral imagery: an overview
    Ben Salem, Manel
    Ettabaa, Karim Saheb
    Hamdi, Mohamed Ali
    2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,
  • [34] Adversarial autoencoder for hyperspectral anomaly detection
    Du Q.
    Xie W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1105 - 1114
  • [35] ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING
    Frontera-Pons, J.
    Veganzones, M. A.
    Velasco-Forero, S.
    Pascal, F.
    Ovarlez, J. P.
    Chanussot, J.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [36] Greedy Ensemble Hyperspectral Anomaly Detection
    Hossain, Mazharul
    Younis, Mohammed
    Robinson, Aaron
    Wang, Lan
    Preza, Chrysanthe
    JOURNAL OF IMAGING, 2024, 10 (06)
  • [37] Hyperspectral Anomaly Detection With Guided Autoencoder
    Xiang, Pei
    Ali, Shahzad
    Jung, Soon Ki
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] Iterative SpectralSpatial Hyperspectral Anomaly Detection
    Chang, Chein-, I
    Lin, Chien-Yu
    Chung, Pau-Choo
    Hu, Peter Fuming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [39] HYPERSPECTRAL ANOMALY DETECTION IN URBAN SCENARIOS
    Rejas Ayuga, J. G.
    Martinez Marin, R.
    Marchamalo Sacristan, M.
    Bonatti, J.
    Ojeda, J. C.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 111 - 116
  • [40] Research progress on hyperspectral anomaly detection
    Qu B.
    Zheng X.
    Qian X.
    Lu X.
    National Remote Sensing Bulletin, 2024, 28 (01) : 42 - 54