共 57 条
- [1] Candes E J, Li X D, Ma Y, Wright J., Robust principal component analysis?, Journal of the ACM, 58, 3, (2011)
- [2] Chen Y, Nasrabadi N M, Tran T D., Sparse representation for target detection in hyperspectral imagery, IEEE Journal of Selected Topics in Signal Processing, 5, 3, pp. 629-640, (2011)
- [3] Cheng T K, Wang B., Graph and total variation regularized low-rank representation for hyperspectral anomaly detection, IEEE Transactions on Geoscience and Remote Sensing, 58, 1, pp. 391-406, (2020)
- [4] Feng S, Tang S L, Zhao C H, Cui Y., A hyperspectral anomaly detection method based on low-rank and sparse decomposition with density peak guided collaborative representation, IEEE Transactions on Geoscience and Remote Sensing, 60, (2022)
- [5] Fu X Y, Jia S, Zhuang L N, Xu M, Zhou J, Li Q Q., Hyperspectral anomaly detection via deep plug-and-play denoising CNN regularization, IEEE Transactions on Geoscience and Remote Sensing, 59, 11, pp. 9553-9568, (2021)
- [6] Geng X R, Sun K, Ji L Y, Zhao Y C., A high-order statistical tensor based algorithm for anomaly detection in hyperspectral imagery, Scientific Reports, 4, 1, (2014)
- [7] Guo Q D, Zhang B, Ran Q, Gao L R, Li J, Plaza A., Weighted-RXD and linear filter-based RXD: improving background statistics estimation for anomaly detection in hyperspectral imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 6, pp. 2351-2366, (2014)
- [8] Herweg J A, Kerekes J P, Weatherbee O, Messinger D, van Aardt J, Ientilucci E, Ninkov Z, Faulring J, Raqueno N, Meola J., SpecTIR hyperspectral airborne Rochester experiment data collection campaign, Proceedings Volume 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, pp. 717-726, (2012)
- [9] Hu J, Zhang Y J, Zhao M H, Li P., Spatial-spectral extraction for hyperspectral anomaly detection, IEEE Geoscience and Remote Sensing Letters, 19, (2022)
- [10] Jiang K, Xie W Y, Li Y S, Lei J, He G, Du Q., Semisuper-vised spectral learning with generative adversarial network for hyperspectral anomaly detection, IEEE Transactions on Geoscience and Remote Sensing, 58, 7, pp. 5224-5236, (2020)