Efficient generator of mathematical expressions for symbolic regression

被引:6
|
作者
Meznar, Sebastian [1 ,2 ]
Dzeroski, Saso [1 ]
Todorovski, Ljupco [1 ,3 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Jadranska 21, Ljubljana 1000, Slovenia
关键词
Symbolic regression; Equation discovery; Generative models; Variational autoencoders; Evolutionary algorithms;
D O I
10.1007/s10994-023-06400-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach to symbolic regression based on a novel variational autoencoder for generating hierarchical structures, HVAE. It combines simple atomic units with shared weights to recursively encode and decode the individual nodes in the hierarchy. Encoding is performed bottom-up and decoding top-down. We empirically show that HVAE can be trained efficiently with small corpora of mathematical expressions and can accurately encode expressions into a smooth low-dimensional latent space. The latter can be efficiently explored with various optimization methods to address the task of symbolic regression. Indeed, random search through the latent space of HVAE performs better than random search through expressions generated by manually crafted probabilistic grammars for mathematical expressions. Finally, EDHiE system for symbolic regression, which applies an evolutionary algorithm to the latent space of HVAE, reconstructs equations from a standard symbolic regression benchmark better than a state-of-the-art system based on a similar combination of deep learning and evolutionary algorithms.
引用
收藏
页码:4563 / 4596
页数:34
相关论文
共 50 条
  • [21] An Efficient Federated Genetic Programming Framework for Symbolic Regression
    Dong, Junlan
    Zhong, Jinghui
    Chen, Wei-Neng
    Zhang, Jun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 858 - 871
  • [22] An efficient memetic genetic programming framework for symbolic regression
    Cheng, Tiantian
    Zhong, Jinghui
    MEMETIC COMPUTING, 2020, 12 (04) : 299 - 315
  • [23] An efficient memetic genetic programming framework for symbolic regression
    Tiantian Cheng
    Jinghui Zhong
    Memetic Computing, 2020, 12 : 299 - 315
  • [24] Efficient Indexing of Similarity Models with Inequality Symbolic Regression
    Bartos, Tomas
    Skopal, Tomas
    Mosko, Juraj
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 901 - 908
  • [25] MASYCA - INTERACTIVE COMMAND-LANGUAGE FOR THE SYMBOLIC MANIPULATION OF MATHEMATICAL FORMULA EXPRESSIONS
    DEGEN, W
    ANGEWANDTE INFORMATIK, 1980, (01): : 18 - 26
  • [26] Improving Model-Based Genetic Programming for Symbolic Regression of Small Expressions
    Virgolin, M.
    Alderliesten, T.
    Witteveen, C.
    Bosman, P. A. N.
    EVOLUTIONARY COMPUTATION, 2021, 29 (02) : 211 - 237
  • [27] Fuzzing Symbolic Expressions
    Borzacchiello, Luca
    Coppa, Emilio
    Demetrescu, Camil
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 711 - 722
  • [28] Efficient Approaches to Interleaved Sampling of training data for Symbolic Regression
    Azad, R. Muhammad Atif
    Medernach, David
    Ryan, Conor
    2014 SIXTH WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2014, : 176 - 183
  • [29] Design and Implementation of MP, a Protocol for Efficient Exchange of Mathematical Expressions
    Gray, S.
    Kajler, N.
    Wang, P. S.
    Journal of Symbolic Computation, 25 (02):
  • [30] Design and implementation of MP, a protocol for efficient exchange of mathematical expressions
    Gray, S
    Kajler, N
    Wang, PS
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 25 (02) : 213 - 237