An Efficient Federated Genetic Programming Framework for Symbolic Regression

被引:10
|
作者
Dong, Junlan [1 ]
Zhong, Jinghui [1 ]
Chen, Wei-Neng [1 ]
Zhang, Jun [2 ,3 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Zhejiang Normal Univ, Jinhua 321004, Zhejiang, Peoples R China
[3] Hanyang Univ, Ansan 15588, South Korea
基金
中国国家自然科学基金;
关键词
Federated genetic programming; mean shift aggregation; decentralized data; data privacy;
D O I
10.1109/TETCI.2022.3201299
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression is an important method of datadriven modeling, which can provide explicit mathematical expressions for data analysis. However, the existing genetic programming algorithms for symbolic regression require centralized storage of all data, which is unrealistic in many practical applications that involve data privacy. If the data comes from different sources, such as hospitals and banks, it is prone to privacy breaches and security issues. To this end, we propose an efficient federated genetic programming framework that can train a global model without integrated data. Each client can process decentralized data locally in parallel, without sending the original data to the server. This method not only protects the privacy of the data but also reduces the time required for data collection. Moreover, a mean shift aggregation mechanism is developed for aggregating local fitness. Considering the samples' relative importance, the mechanism improves the imbalance of symbolic regression data on real-life by incorporating weights into fitness function. Furthermore, based on this framework and self-learning gene expression programming (SL-GEP), a federated self-learning gene expression programming algorithm is developed. The experimental results show that, compared with standard SL-GEP which is a training model based on decentralized data only, our proposed federated genetic programming method is effective to protect data privacy and can have consistently better generalization performance.
引用
收藏
页码:858 / 871
页数:14
相关论文
共 50 条
  • [1] An efficient memetic genetic programming framework for symbolic regression
    Cheng, Tiantian
    Zhong, Jinghui
    MEMETIC COMPUTING, 2020, 12 (04) : 299 - 315
  • [2] An efficient memetic genetic programming framework for symbolic regression
    Tiantian Cheng
    Jinghui Zhong
    Memetic Computing, 2020, 12 : 299 - 315
  • [3] Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming
    Randall, David L.
    Townsend, Tyler S.
    Hochhalter, Jacob D.
    Bomarito, Geoffrey F.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2282 - 2288
  • [4] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [5] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [6] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [7] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [8] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [9] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [10] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919