An Efficient Federated Genetic Programming Framework for Symbolic Regression

被引:10
|
作者
Dong, Junlan [1 ]
Zhong, Jinghui [1 ]
Chen, Wei-Neng [1 ]
Zhang, Jun [2 ,3 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Zhejiang Normal Univ, Jinhua 321004, Zhejiang, Peoples R China
[3] Hanyang Univ, Ansan 15588, South Korea
基金
中国国家自然科学基金;
关键词
Federated genetic programming; mean shift aggregation; decentralized data; data privacy;
D O I
10.1109/TETCI.2022.3201299
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression is an important method of datadriven modeling, which can provide explicit mathematical expressions for data analysis. However, the existing genetic programming algorithms for symbolic regression require centralized storage of all data, which is unrealistic in many practical applications that involve data privacy. If the data comes from different sources, such as hospitals and banks, it is prone to privacy breaches and security issues. To this end, we propose an efficient federated genetic programming framework that can train a global model without integrated data. Each client can process decentralized data locally in parallel, without sending the original data to the server. This method not only protects the privacy of the data but also reduces the time required for data collection. Moreover, a mean shift aggregation mechanism is developed for aggregating local fitness. Considering the samples' relative importance, the mechanism improves the imbalance of symbolic regression data on real-life by incorporating weights into fitness function. Furthermore, based on this framework and self-learning gene expression programming (SL-GEP), a federated self-learning gene expression programming algorithm is developed. The experimental results show that, compared with standard SL-GEP which is a training model based on decentralized data only, our proposed federated genetic programming method is effective to protect data privacy and can have consistently better generalization performance.
引用
收藏
页码:858 / 871
页数:14
相关论文
共 50 条
  • [31] Population Dynamics in Genetic Programming for Dynamic Symbolic Regression
    Fleck, Philipp
    Werth, Bernhard
    Affenzeller, Michael
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [32] A new hybrid structure genetic programming in symbolic regression
    Xiong, SW
    Wang, WW
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1500 - 1506
  • [33] Semantic schema based genetic programming for symbolic regression
    Zojaji, Zahra
    Ebadzadeh, Mohammad Mehdi
    Nasiri, Hamid
    APPLIED SOFT COMPUTING, 2022, 122
  • [34] Further Investigation on Genetic Programming with Transfer Learning for Symbolic Regression
    Haslam, Edward
    Xue, Bing
    Zhang, Mengjie
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3598 - 3605
  • [35] Symbolic regression on noisy data with genetic and gene expression programming
    Bautu, E
    Bautu, A
    Luchian, H
    Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 321 - 324
  • [36] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [37] Genetic Programming for Symbolic Regression: A Study on Fish Weight Prediction
    Yang, Yunhan
    Xue, Bing
    Jesson, Linley
    Zhang, Mengjie
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 588 - 595
  • [38] Symbolic regression problems by genetic programming with multi-branches
    Morales, CO
    Vázquez, KR
    MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 2972 : 717 - 726
  • [39] Rademacher Complexity for Enhancing the Generalization of Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2382 - 2395
  • [40] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342