Impact of Deep Learning Optimizers and Hyperparameter Tuning on the Performance of Bearing Fault Diagnosis

被引:6
|
作者
Lee, Seongjae [1 ]
Kim, Taehyoun [1 ]
机构
[1] Univ Seoul, Dept Mech & Informat Engn Smart Cities, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Fault diagnosis; Benchmark testing; Convolutional neural networks; Deep learning; Parameter estimation; Computational modeling; Noise measurement; Bearing fault diagnosis; convolutional neural network; deep learning; hyperparameter tuning; noise-robustness; optimization; CONVOLUTIONAL NEURAL-NETWORK; EMPIRICAL MODE DECOMPOSITION; NOISE;
D O I
10.1109/ACCESS.2023.3281910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has recently resulted in remarkable performance improvements in machine fault diagnosis using only raw input vibration signals without signal preprocessing. However, research on machine fault diagnosis using deep learning has primarily focused on model architectures, even though optimizers and their hyperparameters used for training can have a significant impact on model performance. This paper presents extensive benchmarking results on the tuning of optimizer hyperparameters using various combinations of datasets, convolutional neural network (CNN) models, and optimizers with varying batch sizes. First, we set the hyperparameter search space and then trained the models using hyperparameters sampled from a quasi-random distribution. Subsequently, we refined the search space based on the results of the first step and finally evaluated model performances using noise-free and noisy data. The results showed that the learning rate and momentum factor, which determine training speed, substantially affected the model's accuracy. We also discovered that the impacts of batch size and model training speed on model performance were highly correlated; large batch sizes led to higher performances at higher learning rates or momentum factors. Conversely, model performances tended to be high for small batch sizes at lower learning rates or momentum factors. In addition, regarding the growing attention to on-device artificial intelligence (AI) solutions, we assessed the accuracy and computational efficiency of candidate models. A CNN with training interference (TICNN) was the most efficient model in terms of computational efficiency and robustness against noise among the benchmarked candidate models.
引用
收藏
页码:55046 / 55070
页数:25
相关论文
共 50 条
  • [21] Bearing fault diagnosis method based on compressed acquisition and deep learning
    Wen J.
    Yan C.
    Sun J.
    Qiao Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2018, 39 (01): : 171 - 179
  • [22] Intelligent Fault Diagnosis of Rolling Bearing Based on Deep Transfer Learning
    Fang, Lei
    Liu, Yao
    Li, Xuan
    Chang, Jiantao
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 753 - 757
  • [23] Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis
    Che, Changchang
    Wang, Huawei
    Ni, Xiaomei
    Lin, Ruiguan
    MEASUREMENT, 2021, 173
  • [24] A joint deep learning model for bearing fault diagnosis in noisy environments
    Ji, Min
    Chu, Changsheng
    Yang, Jinghui
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, : 3265 - 3281
  • [25] Fault Diagnosis of Bearing Based on Variational Mode Decomposition and Deep Learning
    Cui, Jianguo
    Tang, Shan
    Cui, Xiao
    Wang, Jinglin
    Yu, Mingyue
    Du, Wenyou
    Jiang, Liying
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5413 - 5417
  • [26] Bearing Fault Diagnosis Based on Artificial Intelligence Methods: Machine Learning and Deep Learning
    Ghorbel, Ahmed
    Eddai, Sarra
    Limam, Bouthayna
    Feki, Nabih
    Haddar, Mohamed
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [27] AN EMPIRICAL STUDY OF MACHINE LEARNING AND DEEP LEARNING ALGORITHMS ON BEARING FAULT DIAGNOSIS BENCHMARKS
    Rezaeianjouybari, Behnoush
    Shang, Yi
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 7A, 2021,
  • [28] Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification
    Shankar, K.
    Zhang, Yizhuo
    Liu, Yiwei
    Wu, Ling
    Chen, Chi-Hua
    IEEE ACCESS, 2020, 8 : 118164 - 118173
  • [29] Deep learning network optimization and hyperparameter tuning for seismic lithofacies classification
    Jervis M.
    Liu M.
    Smith R.
    Leading Edge, 2021, 40 (07): : 514 - 523
  • [30] A Statistical Approach to Hyperparameter Tuning of Deep Learning for Construction Machine Classification
    Ottoni, Andre Luiz C.
    Novo, Marcela S.
    Oliveira, Marcos S.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (04) : 5117 - 5128