Bearing Fault Diagnosis Based on Artificial Intelligence Methods: Machine Learning and Deep Learning

被引:3
|
作者
Ghorbel, Ahmed [1 ,2 ]
Eddai, Sarra [1 ]
Limam, Bouthayna [1 ]
Feki, Nabih [1 ]
Haddar, Mohamed [1 ]
机构
[1] Univ Sfax, Natl Sch Engn Sfax, Lab Mech Modelling & Prod, Sfax, Tunisia
[2] Univ Kairouan, Higher Inst Appl Sci & Technol Kairouan, Kairouan, Tunisia
关键词
Intelligent fault diagnosis; Machine learning; Deep learning; Indicators; CWRU dataset; WAVELET TRANSFORM; GENETIC ALGORITHM;
D O I
10.1007/s13369-024-09488-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a comprehensive study on the application of Artificial Intelligence (AI) methods, specifically machine learning and deep learning, for the diagnosis of bearing faults. The study explores both data preprocessing-dependent methods (Support Vector Machine, Nearest Neighbor, and Decision Tree) and a preprocessing-independent method (1D Convolutional Neural Network). The experiment setup utilizes the Case Western Reserve University dataset for signal acquisition. A detailed strategy for data processing is developed, encompassing initialization, data loading, signal filtration, decomposition, feature extraction in both time- and frequency-domains, and feature selection. Indeed, the study involves working with four datasets, selected based on the distribution curves of the indicators as a function of the number of observations. The results demonstrate remarkable performance of the AI methods in bearing fault diagnosis. The 1D-CNN model, in particular, shows high robustness and accuracy, even in the presence of load variations. The findings of this study shed light on the significant potential of AI methods in improving the accuracy and efficiency of bearing fault diagnosis.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321
  • [2] Artificial Intelligence, Machine Learning and Deep Learning
    Ongsulee, Pariwat
    2017 15TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2017, : 92 - 97
  • [3] Artificial Intelligence, Machine Learning, and Deep Learning in the Diagnosis and Management of Hepatocellular Carcinoma
    Larrain, Carolina
    Torres-Hernandez, Alejandro
    Hewitt, Daniel Brock
    LIVERS, 2024, 4 (01): : 36 - 50
  • [4] Motor Bearing Fault Diagnosis Based on Deep Learning
    Zhang, Wei
    Hu, Yong
    Zeng, Deliang
    Luo, Wei
    Li, Gengda
    Liu, Miao
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 8 - 14
  • [5] Deep Learning Based Approach for Bearing Fault Diagnosis
    He, Miao
    He, David
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) : 3057 - 3065
  • [6] Fault diagnosis of motor bearing based on deep learning
    Jian, Yifan
    Qing, Xianguo
    He, Liang
    Zhao, Yang
    Qi, Xiao
    Du, Ming
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (09)
  • [7] A survey on Deep Learning based bearing fault diagnosis
    Hoang, Duy-Tang
    Kang, Hee-Jun
    NEUROCOMPUTING, 2019, 335 : 327 - 335
  • [8] A Study on Machine Learning and Artificial Intelligence Methods in Detecting the Minor Outer-Raceway Bearing Fault
    Pandarakone, Shrinathan Esakimuthu
    Gunasekaran, Santhosh
    Asano, Keisuke
    Mizuno, Yukio
    Nakamura, Hisahide
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 994 - 999
  • [9] AN EMPIRICAL STUDY OF MACHINE LEARNING AND DEEP LEARNING ALGORITHMS ON BEARING FAULT DIAGNOSIS BENCHMARKS
    Rezaeianjouybari, Behnoush
    Shang, Yi
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 7A, 2021,
  • [10] Bearing Fault Diagnosis Based on Optimized Deep Hybrid Kernel Extreme Learning Machine
    Qi, Zhenyu
    Ma, Liling
    Wang, Junzheng
    Feng, Shanhao
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3033 - 3038