Efficient Methods for Natural Language Processing: A Survey

被引:0
|
作者
Treviso, Marcos [1 ]
Lee, Ji-Ung [2 ]
Ji, Tianchu [3 ]
van Aken, Betty [4 ]
Cao, Qingqing [5 ]
Ciosici, Manuel R. [6 ]
Hassid, Michael [7 ]
Heafield, Kenneth [8 ]
Hooker, Sara [9 ]
Raffel, Colin [10 ]
Martins, Pedro H. [1 ,11 ]
Martins, Andre F. T. [1 ,11 ]
Forde, Jessica Zosa [12 ]
Milder, Peter [16 ]
Simpson, Edwin [13 ]
Slonim, Noam [14 ]
Dodge, Jesse [15 ]
Strubell, Emma [15 ,16 ]
Balasubramanian, Niranjan [3 ]
Derczynski, Leon [5 ,17 ]
Gurevych, Iryna [2 ]
Schwartz, Roy [7 ]
机构
[1] IST U Lisbon & Inst Telecomunicacoes, Lisbon, Portugal
[2] Tech Univ Darmstadt, Darmstadt, Germany
[3] SUNY Stony Brook, Stony Brook, NY USA
[4] Berliner Hsch Tech, Berlin, Germany
[5] Univ Washington, Washington, DC USA
[6] Univ Southern Calif, Los Angeles, CA USA
[7] Hebrew Univ Jerusalem, Jerusalem, Israel
[8] Univ Edinburgh, Edinburgh, Scotland
[9] Cohere AI, San Francisco, CA USA
[10] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
[11] Unbabel, Lisbon, Portugal
[12] Brown Univ, Providence, RI USA
[13] Univ Bristol, Bristol, England
[14] IBM Res, Haifa, Israel
[15] Allen Inst AI, Seattle, WA USA
[16] Carnegie Mellon Univ, Pittsburgh, PA USA
[17] IT Univ Copenhagen, Copenhagen, Denmark
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.
引用
收藏
页码:826 / 860
页数:35
相关论文
共 50 条
  • [41] A Review of Probe Interpretable Methods in Natural Language Processing
    Ju T.-J.
    Liu G.-S.
    Zhang Z.-S.
    Zhang R.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (04): : 733 - 758
  • [42] Vulnerability Detection Methods Based on Natural Language Processing
    Yang Y.
    Li Y.
    Chen K.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (12): : 2649 - 2666
  • [43] Methods to Integrate Natural Language Processing Into Qualitative Research
    Abram, Marissa D.
    Mancini, Karen T.
    Parker, R. David
    INTERNATIONAL JOURNAL OF QUALITATIVE METHODS, 2020, 19
  • [44] Tutorial: Machine learning methods in natural language processing
    Collins, M
    LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 655 - 655
  • [45] Matrix and Tensor Factorization Methods for Natural Language Processing
    Bouchard, Guillaume
    Naradowsky, Jason
    Riedel, Sebastian
    Rocktaschel, Tim
    Vlachos, Andreas
    53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2015), 2015, : 16 - 18
  • [46] OVERVIEW OF NATURAL LANGUAGE PROCESSING AND MACHINE TRANSLATION METHODS
    Suman, Sabrina
    ZBORNIK VELEUCILISTA U RIJECI-JOURNAL OF THE POLYTECHNICS OF RIJEKA, 2021, 9 (01): : 371 - 384
  • [47] A survey of grammatical inference methods for natural language learning
    Arianna D’Ulizia
    Fernando Ferri
    Patrizia Grifoni
    Artificial Intelligence Review, 2011, 36 : 1 - 27
  • [48] A survey of grammatical inference methods for natural language learning
    D'Ulizia, Arianna
    Ferri, Fernando
    Grifoni, Patrizia
    ARTIFICIAL INTELLIGENCE REVIEW, 2011, 36 (01) : 1 - 27
  • [49] Survey of Multi-task Learning in Natural Language Processing: Regarding Task Relatedness and Training Methods
    Zhang, Zhihan
    Yu, Wenhao
    Yu, Mengxia
    Guo, Zhichun
    Jiang, Meng
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 943 - 956
  • [50] Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing
    Ponti, Edoardo Maria
    O'Horan, Helen
    Berzak, Yevgeni
    Vulic, Ivan
    Reichart, Roi
    Poibeau, Thierry
    Shutova, Ekaterina
    Korhonen, Anna
    COMPUTATIONAL LINGUISTICS, 2019, 45 (03) : 559 - 601