Efficient Methods for Natural Language Processing: A Survey

被引:0
|
作者
Treviso, Marcos [1 ]
Lee, Ji-Ung [2 ]
Ji, Tianchu [3 ]
van Aken, Betty [4 ]
Cao, Qingqing [5 ]
Ciosici, Manuel R. [6 ]
Hassid, Michael [7 ]
Heafield, Kenneth [8 ]
Hooker, Sara [9 ]
Raffel, Colin [10 ]
Martins, Pedro H. [1 ,11 ]
Martins, Andre F. T. [1 ,11 ]
Forde, Jessica Zosa [12 ]
Milder, Peter [16 ]
Simpson, Edwin [13 ]
Slonim, Noam [14 ]
Dodge, Jesse [15 ]
Strubell, Emma [15 ,16 ]
Balasubramanian, Niranjan [3 ]
Derczynski, Leon [5 ,17 ]
Gurevych, Iryna [2 ]
Schwartz, Roy [7 ]
机构
[1] IST U Lisbon & Inst Telecomunicacoes, Lisbon, Portugal
[2] Tech Univ Darmstadt, Darmstadt, Germany
[3] SUNY Stony Brook, Stony Brook, NY USA
[4] Berliner Hsch Tech, Berlin, Germany
[5] Univ Washington, Washington, DC USA
[6] Univ Southern Calif, Los Angeles, CA USA
[7] Hebrew Univ Jerusalem, Jerusalem, Israel
[8] Univ Edinburgh, Edinburgh, Scotland
[9] Cohere AI, San Francisco, CA USA
[10] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
[11] Unbabel, Lisbon, Portugal
[12] Brown Univ, Providence, RI USA
[13] Univ Bristol, Bristol, England
[14] IBM Res, Haifa, Israel
[15] Allen Inst AI, Seattle, WA USA
[16] Carnegie Mellon Univ, Pittsburgh, PA USA
[17] IT Univ Copenhagen, Copenhagen, Denmark
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.
引用
收藏
页码:826 / 860
页数:35
相关论文
共 50 条
  • [21] Survey of Open Source Natural Language Processing Tools
    Liao, Chunlin
    Zhang, Hongjun
    Liao, Xianglin
    Cheng, Kai
    Li, Dashuo
    Wang, Hang
    Computer Engineering and Applications, 2023, 59 (22) : 36 - 56
  • [22] Resources for Turkish natural language processing: A critical survey
    Çağrı Çöltekin
    A. Seza Doğruöz
    Özlem Çetinoğlu
    Language Resources and Evaluation, 2023, 57 : 449 - 488
  • [23] A Survey on Natural Language Processing for Fake News Detection
    Oshikawa, Ray
    Qian, Jing
    Wang, William Yang
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 6086 - 6093
  • [24] A Natural Language Processing Survey on Legislative and Greek Documents
    Krasadakis, Panteleimon
    Sakkopoulos, Evangelos
    Verykios, Vassilios S.
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 407 - 412
  • [25] A SURVEY OF QUESTION ANSWERING IN NATURAL-LANGUAGE PROCESSING
    WERMTER, S
    LEHNERT, WG
    POETICS, 1990, 19 (1-2) : 99 - 120
  • [26] A Survey on Dynamic Neural Networks for Natural Language Processing
    Xu, Canwen
    McAuley, Julian
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 2370 - 2381
  • [27] A Survey On Thesauri Application In Automatic Natural Language Processing
    Shchitov, Ivan
    Lagutina, Ksenia
    Lagutina, Nadezhda
    Paramonov, Ilya
    Vasilyev, Andrey
    PROCEEDINGS OF THE 2017 21ST CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2017, : 296 - 303
  • [28] A Panoramic Survey of Natural Language Processing in the Arab World
    Darwish, Kareem
    Habash, Nizar
    Abbas, Mourad
    Al-Khalifa, Hend
    Al-Natsheh, Huseein T.
    Bouamor, Houda
    Bouzoubaa, Karim
    Cavalli-Sforza, Violetta
    El-Beltagy, Samhaa R.
    El-Hajj, Wassim
    Jarrar, Mustafa
    Mubarak, Hamdy
    COMMUNICATIONS OF THE ACM, 2021, 64 (04) : 72 - 81
  • [29] A Survey on Backdoor Attack and Defense in Natural Language Processing
    Sheng, Xuan
    Han, Zhaoyang
    Li, Piji
    Chang, Xiangmao
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2022, : 809 - 820
  • [30] Graph Neural Networks for Natural Language Processing: A Survey
    Wu, Lingfei
    Chen, Yu
    Shen, Kai
    Guo, Xiaojie
    Gao, Hanning
    Li, Shucheng
    Pei, Jian
    Long, Bo
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (02): : 119 - 329