Forest Vegetation Detection Using Deep Learning Object Detection Models

被引:4
|
作者
Mendes, Paulo A. S. [1 ]
Coimbra, Antonio Paulo [1 ,2 ]
de Almeida, Anibal T. [1 ]
机构
[1] Univ Coimbra, Inst Syst & Robot, P-3030290 Coimbra, Portugal
[2] Univ Coimbra, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
来源
FORESTS | 2023年 / 14卷 / 09期
关键词
object detection; deep learning; computer vision; autonomous vehicle; forest cleaning; ROAD-SIGN DETECTION;
D O I
10.3390/f14091787
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forest fires have become increasingly prevalent and devastating in many regions worldwide, posing significant threats to biodiversity, ecosystems, human settlements, and the economy. The United States (USA) and Portugal are two countries that have experienced recurrent forest fires, raising concerns about the role of forest fuel and vegetation accumulation as contributing factors. One preventive measure which can be adopted to minimize the impact of the forest fires is to cut the amount of forest fuel available to burn, using autonomous Unmanned Ground Vehicles (UGV) that make use of Artificial intelligence (AI) to detect and classify the forest vegetation to keep and the forest fire fuel to be cut. In this paper, an innovative study of forest vegetation detection and classification using ground vehicles' RGB images is presented to support autonomous forest cleaning operations to prevent fires, using an Unmanned Ground Vehicle (UGV). The presented work compares two recent high-performance Deep Learning methodologies, YOLOv5 and YOLOR, to detect and classify forest vegetation in five classes: grass, live vegetation, cut vegetation, dead vegetation, and tree trunks. For the training of the two models, we used a dataset acquired in a nearby forest. A key challenge for autonomous forest vegetation cleaning is the reliable discrimination of obstacles (e.g., tree trunks or stones) that must be avoided, and objects that need to be identified (e.g., dead/dry vegetation) to enable the intended action of the robot. With the obtained results, it is concluded that YOLOv5 presents an overall better performance. Namely, the object detection architecture is faster to train, faster in inference speed (achieved in real time), has a small trained weight file, and attains higher precision, therefore making it highly suitable for forest vegetation detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Exploring Deep Learning Models for Overhead View Multiple Object Detection
    Ahmed, Imran
    Din, Sadia
    Jeon, Gwanggil
    Piccialli, Francesco
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) : 5737 - 5744
  • [22] Quantitative Analysis of Deep Learning-Based Object Detection Models
    Elgazzar, Khalid
    Mostafi, Sifatul
    Dennis, Reed
    Osman, Youssef
    IEEE ACCESS, 2024, 12 : 70025 - 70044
  • [23] Accelerating Object Detection Models Inference within Deep Learning Workbench
    Demidovskij, Alexander
    Tugaryov, Artyom
    Fatekhov, Marat
    Aidova, Ekaterina
    Stepyreva, Evgenya
    Shevtsov, Maxim
    Gorbachev, Yury
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 546 - 551
  • [24] Benchmarking Deep Learning Models for Object Detection on Edge Computing Devices
    Alqahtani, Daghash K.
    Cheema, Muhammad Aamir
    Toosi, Adel N.
    SERVICE-ORIENTED COMPUTING, ICSOC 2024, PT I, 2025, 15404 : 142 - 150
  • [25] Deep active learning for object detection
    Li, Ying
    Fan, Binbin
    Zhang, Weiping
    Ding, Weiping
    Yin, Jianwei
    INFORMATION SCIENCES, 2021, 579 : 418 - 433
  • [26] VALIDATION FRAMEWORK FOR ADAS DEEP LEARNING BASED OBJECT DETECTION MODELS
    Ghandour, Mohamed Osama Mohamed Samy
    Elsayed, Khaled Fouad
    2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND SMART INNOVATION, ICMISI 2024, 2024, : 214 - 219
  • [27] A Comparative Study on the Maritime Object Detection Performance of Deep Learning Models
    Moon, Sung Won
    Lee, Jiwon
    Lee, Jungsoo
    Nam, Dowon
    Yoo, Wonyoung
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1155 - 1157
  • [28] Active Learning for Deep Object Detection
    Brust, Clemens-Alexander
    Kaeding, Christoph
    Denzler, Joachim
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 181 - 190
  • [29] Learning Deep Relationship for Object Detection
    Xu, Nuo
    Huo, Chunlei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (01) : 273 - 276
  • [30] Deep learning for object detection in video
    Lu, Shengyu
    2018 INTERNATIONAL SEMINAR ON COMPUTER SCIENCE AND ENGINEERING TECHNOLOGY (SCSET 2018), 2019, 1176