Forest Vegetation Detection Using Deep Learning Object Detection Models

被引:4
|
作者
Mendes, Paulo A. S. [1 ]
Coimbra, Antonio Paulo [1 ,2 ]
de Almeida, Anibal T. [1 ]
机构
[1] Univ Coimbra, Inst Syst & Robot, P-3030290 Coimbra, Portugal
[2] Univ Coimbra, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
来源
FORESTS | 2023年 / 14卷 / 09期
关键词
object detection; deep learning; computer vision; autonomous vehicle; forest cleaning; ROAD-SIGN DETECTION;
D O I
10.3390/f14091787
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forest fires have become increasingly prevalent and devastating in many regions worldwide, posing significant threats to biodiversity, ecosystems, human settlements, and the economy. The United States (USA) and Portugal are two countries that have experienced recurrent forest fires, raising concerns about the role of forest fuel and vegetation accumulation as contributing factors. One preventive measure which can be adopted to minimize the impact of the forest fires is to cut the amount of forest fuel available to burn, using autonomous Unmanned Ground Vehicles (UGV) that make use of Artificial intelligence (AI) to detect and classify the forest vegetation to keep and the forest fire fuel to be cut. In this paper, an innovative study of forest vegetation detection and classification using ground vehicles' RGB images is presented to support autonomous forest cleaning operations to prevent fires, using an Unmanned Ground Vehicle (UGV). The presented work compares two recent high-performance Deep Learning methodologies, YOLOv5 and YOLOR, to detect and classify forest vegetation in five classes: grass, live vegetation, cut vegetation, dead vegetation, and tree trunks. For the training of the two models, we used a dataset acquired in a nearby forest. A key challenge for autonomous forest vegetation cleaning is the reliable discrimination of obstacles (e.g., tree trunks or stones) that must be avoided, and objects that need to be identified (e.g., dead/dry vegetation) to enable the intended action of the robot. With the obtained results, it is concluded that YOLOv5 presents an overall better performance. Namely, the object detection architecture is faster to train, faster in inference speed (achieved in real time), has a small trained weight file, and attains higher precision, therefore making it highly suitable for forest vegetation detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] A Deep Learning Based Object Identification System for Forest Fire Detection
    Guede-Fernandez, Federico
    Martins, Leonardo
    de Almeida, Rui Valente
    Gamboa, Hugo
    Vieira, Pedro
    FIRE-SWITZERLAND, 2021, 4 (04):
  • [12] Object Detection at Level Crossing Using Deep Learning
    Fayyaz, Muhammad Asad Bilal
    Johnson, Christopher
    MICROMACHINES, 2020, 11 (12) : 1 - 16
  • [13] Deep learning for Object Detection using RADAR Data
    Reda, Ahmed M.
    El-Sheimy, Naser
    Moussa, Adel
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 657 - 664
  • [14] Multi-Class Object Classification using Deep Learning Models in Automotive Object Detection Scenarios
    Soumya, A.
    Cenkeramaddi, Linga Reddy
    Vishnu, Chalavadi
    Mohan, Krishna C.
    SIXTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2023, 2024, 13072
  • [15] A Proposed Approach for Object Detection and Recognition by Deep Learning Models Using Data Augmentation
    Abdulkareem, Ismael M.
    AL-Shammri, Faris K.
    Khalid, Noor Aldeen A.
    Omran, Natiq A.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (05) : 31 - 43
  • [16] Deep learning object detection to estimate the nectar sugar mass of flowering vegetation
    Hicks, Damien
    Baude, Mathilde
    Kratz, Christoph
    Ouvrard, Pierre
    Stone, Graham
    ECOLOGICAL SOLUTIONS AND EVIDENCE, 2021, 2 (03):
  • [17] Forest Fires Detection using Deep Transfer Learning
    Yandouzi, Mimoun
    Grari, Mounir
    Idrissi, Idriss
    Boukabous, Mohammed
    Moussaoui, Omar
    Azizi, Mostafa
    Ghoumid, Kamal
    Elmiad, Aissa Kerkour
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 268 - 275
  • [18] Small Pests Detection in Field Crops Using Deep Learning Object Detection
    Khalid, Saim
    Oqaibi, Hadi Mohsen
    Aqib, Muhammad
    Hafeez, Yaser
    SUSTAINABILITY, 2023, 15 (08)
  • [19] Learning Pushing Skills Using Object Detection and Deep Reinforcement Learning
    Guo, Wei
    Dong, Guantao
    Chen, Chen
    Li, Mantian
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 469 - 474
  • [20] Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models
    Hardalac, Firat
    Uysal, Fatih
    Peker, Ozan
    Ciceklidag, Murat
    Tolunay, Tolga
    Tokgoz, Nil
    Kutbay, Ugurhan
    Demirciler, Boran
    Mert, Fatih
    SENSORS, 2022, 22 (03)