The Wigner global wave front set in spaces of tempered ultradistributions

被引:3
|
作者
Asensio, Vicente [1 ,2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46071, Spain
[2] Ctr Univ EDEM, Muelle Marina S-N, Valencia 46024, Spain
关键词
Global wave front set; t-Wigner transform; Global ultradifferentiable classes; Gabor frames; PARTIAL-DIFFERENTIAL OPERATORS; PROPAGATION;
D O I
10.1007/s11868-023-00523-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and study global wave front sets in terms of the t-Wigner transform in global ultradifferentiable classes of Beurling type modulated with weight functions in the sense of Braun, Meise, and Taylor, and we compare it with other wave front sets existing in the literature defined by different time-frequency analysis tools, such as the short-time Fourier transform or Gabor frames. Conditions for the equality of these wave front sets are provided and some examples are given.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Global Wave Front Sets in Ultradifferentiable Classes
    Asensio, Vicente
    Boiti, Chiara
    Jornet, David
    Oliaro, Alessandro
    RESULTS IN MATHEMATICS, 2022, 77 (02)
  • [42] Global Wave Front Sets in Ultradifferentiable Classes
    Vicente Asensio
    Chiara Boiti
    David Jornet
    Alessandro Oliaro
    Results in Mathematics, 2022, 77
  • [43] Existence of wave operators for the Wigner equation in L2,p spaces
    Emamirad, H
    Rogeon, P
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) : 811 - 816
  • [44] Wave Front Set of Solutions to Sums of Squares of Vector Fields
    Albano, Paolo
    Bove, Antonio
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 221 (1039) : VII - +
  • [45] The Geometry of the Semiclassical Wave Front Set for Schrodinger Eigenfunctions on the Torus
    Cardin, Franco
    Zanelli, Lorenzo
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
  • [46] The wave front set of oscillatory integrals with inhomogeneous phase function
    Jochen Zahn
    Journal of Pseudo-Differential Operators and Applications, 2011, 2 : 101 - 113
  • [47] ANALYTIC WAVE-FRONT SET AT THE BOUNDARY .1.
    SCHAPIRA, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (10): : 383 - 386
  • [48] The wave front set of oscillatory integrals with inhomogeneous phase function
    Zahn, Jochen
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2011, 2 (01) : 101 - 113
  • [49] Resolution of the Wave Front Set using general Wavelet Transforms
    Fell, Jonathan
    Fuehr, Hartmut
    Voigtlaender, Felix
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 332 - 336
  • [50] PSEUDO DIFFERENTIAL OPERATOR WHICH SHIFTS WAVE FRONT SET
    PARENTI, C
    RODINO, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) : 251 - 257