The Wigner global wave front set in spaces of tempered ultradistributions

被引:3
|
作者
Asensio, Vicente [1 ,2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46071, Spain
[2] Ctr Univ EDEM, Muelle Marina S-N, Valencia 46024, Spain
关键词
Global wave front set; t-Wigner transform; Global ultradifferentiable classes; Gabor frames; PARTIAL-DIFFERENTIAL OPERATORS; PROPAGATION;
D O I
10.1007/s11868-023-00523-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and study global wave front sets in terms of the t-Wigner transform in global ultradifferentiable classes of Beurling type modulated with weight functions in the sense of Braun, Meise, and Taylor, and we compare it with other wave front sets existing in the literature defined by different time-frequency analysis tools, such as the short-time Fourier transform or Gabor frames. Conditions for the equality of these wave front sets are provided and some examples are given.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] The Gabor wave front set
    Rodino, Luigi
    Wahlberg, Patrik
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (04): : 625 - 655
  • [22] Wave front shaping with the generalized Wigner-Smith operator
    Ambichl, P.
    Brandstoetter, A.
    Kuehmayer, M.
    Horodynski, M.
    Bohm, J.
    Kuhl, U.
    Rotter, S.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [23] REMARK ON CHARACTERIZATION OF WAVE FRONT SET BY WAVE PACKET TRANSFORM
    Kato, Keiichi
    Kobayashi, Masaharu
    Ito, Shingo
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (02) : 209 - 228
  • [24] Wave front set for solutions to Schrodinger equations
    Nakamura, Shu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (04) : 1299 - 1309
  • [25] Equality of the homogeneous and the Gabor wave front set
    Schulz, Rene
    Wahlberg, Patrik
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) : 703 - 730
  • [26] Quark Wigner distributions using light-front wave functions
    More, Jai
    Mukherjee, Asmita
    Nair, Sreeraj
    PHYSICAL REVIEW D, 2017, 95 (07)
  • [27] Wave front set defined by wave packet transform and its application
    Kato, Keiichi
    Kobayashi, Masaharu
    Ito, Shingo
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 417 - 425
  • [28] A Characterization for the Gevrey-Sobolev Wave Front Set
    Hua CHEN Institute of Mathematics
    Acta Mathematica Sinica(English Series), 2001, 17 (02) : 295 - 300
  • [29] The wave front set of the Fourier transform of algebraic measures
    Aizenbud, Avraham
    Drinfeld, Vladimir
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 207 (02) : 527 - 580
  • [30] Analytic wave front set for solutions to Schrodinger equations
    Martinez, Andre
    Nakamura, Shu
    Sordoni, Vania
    ADVANCES IN MATHEMATICS, 2009, 222 (04) : 1277 - 1307