Powersum Bases in Quasisymmetric Functions and Quasisymmetric Functions in Non-commuting Variables

被引:0
|
作者
Lazzeroni, Anthony [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 04期
关键词
D O I
10.37236/11724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new powersum basis for the Hopf algebra of quasisymmetric functions that refines the powersum symmetric basis. Unlike the quasisymmetric powersums of types 1 and 2, our basis is defined combinatorially: its expansion in quasisymmetric monomial functions is given by fillings of matrices. This basis has a shuffle product, a deconcatenate coproduct, and has a change of basis rule to the quasisymmetric fundamental basis by using tuples of ribbons. We lift our powersum quasisymmetric P basis to the Hopf algebra of quasisymmetric functions in non-commuting variables by introducing fillings with disjoint sets. This new basis has a shifted shuffle product and a standard deconcatenate coproduct, and certain basis elements agree with the fundamental basis of the Malvenuto-Reutenauer Hopf algebra of permutations. Finally we discuss how to generalize these bases and their properties by using total orders on indices. Mathematics Subject Classifications: 05E05
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II
    Michiel Hazewinkel
    Acta Applicandae Mathematica, 2005, 85 : 319 - 340
  • [32] Tracial smooth functions of non-commuting variables and the free Wasserstein manifold
    JEKEL, D. A. V. I. D.
    LI, W. U. C. H. E. N.
    SHLYAKHTENKO, D. I. M. I. T. R. I.
    DISSERTATIONES MATHEMATICAE, 2022,
  • [33] The probability of positivity in symmetric and quasisymmetric functions
    Patrias, Rebecca
    Van Willigenburg, Stephanie
    JOURNAL OF COMBINATORICS, 2020, 11 (03) : 475 - 493
  • [34] Revisiting Pattern Avoidance and Quasisymmetric Functions
    Bloom, Jonathan S.
    Sagan, Bruce E.
    ANNALS OF COMBINATORICS, 2020, 24 (02) : 337 - 361
  • [35] Peak quasisymmetric functions and Eulerian enumeration
    Billera, LJ
    Hsiao, SK
    van Willigenburg, S
    ADVANCES IN MATHEMATICS, 2003, 176 (02) : 248 - 276
  • [36] A note on three types of quasisymmetric functions
    Petersen, TK
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [37] Generalized Riffle Shuffles and Quasisymmetric Functions
    Richard P. Stanley
    Annals of Combinatorics, 2001, 5 (3) : 479 - 491
  • [38] Rigidity for the Hopf algebra of quasisymmetric functions
    Jia, Wanwan
    Wang, Zhengpan
    Yu, Houyi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [39] Macdonald polynomials and chromatic quasisymmetric functions
    Haglund, James
    Wilson, Andrew Timothy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 21
  • [40] Revisiting Pattern Avoidance and Quasisymmetric Functions
    Jonathan S. Bloom
    Bruce E. Sagan
    Annals of Combinatorics, 2020, 24 : 337 - 361