Powersum Bases in Quasisymmetric Functions and Quasisymmetric Functions in Non-commuting Variables

被引:0
|
作者
Lazzeroni, Anthony [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 04期
关键词
D O I
10.37236/11724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new powersum basis for the Hopf algebra of quasisymmetric functions that refines the powersum symmetric basis. Unlike the quasisymmetric powersums of types 1 and 2, our basis is defined combinatorially: its expansion in quasisymmetric monomial functions is given by fillings of matrices. This basis has a shuffle product, a deconcatenate coproduct, and has a change of basis rule to the quasisymmetric fundamental basis by using tuples of ribbons. We lift our powersum quasisymmetric P basis to the Hopf algebra of quasisymmetric functions in non-commuting variables by introducing fillings with disjoint sets. This new basis has a shifted shuffle product and a standard deconcatenate coproduct, and certain basis elements agree with the fundamental basis of the Malvenuto-Reutenauer Hopf algebra of permutations. Finally we discuss how to generalize these bases and their properties by using total orders on indices. Mathematics Subject Classifications: 05E05
引用
收藏
页数:36
相关论文
共 50 条
  • [1] QUASISYMMETRIC FUNCTIONS FOR NESTOHEDRA
    Grujic, Vladimir
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2570 - 2585
  • [2] Chromatic quasisymmetric functions
    Shareshian, John
    Wachs, Michelle L.
    ADVANCES IN MATHEMATICS, 2016, 295 : 497 - 551
  • [3] Eulerian quasisymmetric functions
    Shareshian, John
    Wachs, Michelle L.
    ADVANCES IN MATHEMATICS, 2010, 225 (06) : 2921 - 2966
  • [4] Kromatic Quasisymmetric Functions
    Marberg, Eric
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):
  • [5] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [6] Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions
    Allen, Edward E.
    Hallam, Joshua
    Mason, Sarah K.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 157 : 70 - 108
  • [7] Random walks on quasisymmetric functions
    Hersh, Patricia
    Hsiao, Samuel K.
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 782 - 808
  • [8] COMMUTING FUNCTIONS OF NON-COMMUTING OPERATORS
    LEVYLEBLOND, JM
    AMERICAN JOURNAL OF PHYSICS, 1982, 50 (07) : 657 - 658
  • [9] Quasisymmetric graphs and Zygmund functions
    Leonid V. Kovalev
    Jani Onninen
    Journal d'Analyse Mathématique, 2012, 118 : 343 - 361
  • [10] Quasisymmetric functions distinguishing trees
    Aval, Jean-Christophe
    Djenabou, Karimatou
    Mcnamara, Peter R. W.
    ALGEBRAIC COMBINATORICS, 2023, 6 (03):