CUQIpy: I. Computational uncertainty quantification for inverse problems in Python']Python

被引:0
|
作者
Riis, Nicolai A. B. [1 ,4 ]
Alghamdi, Amal M. A. [1 ]
Uribe, Felipe [2 ]
Christensen, Silja L. [1 ]
Afkham, Babak M. [1 ]
Hansen, Per Christian [1 ]
Jorgensen, Jakob S. [1 ,3 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Richard Petersens Plads,Bldg 324, DK-2800 Lyngby, Denmark
[2] Lappeenranta Lahti Univ Technol LUT, Sch Engn Sci, Yliopistonkatu 34, Lappeenranta 53850, Finland
[3] Univ Manchester, Dept Math, Oxford Rd, Alan Turing Bldg, Manchester M13 9PL, England
[4] Copenhagen Imaging ApS, Herlev, Denmark
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
uncertainty quantification; software; computational imaging; Bayesian statistics; probabilistic programming; DISTRIBUTIONS; SAMPLER;
D O I
10.1088/1361-6420/ad22e7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces CUQIpy, a versatile open-source Python package for computational uncertainty quantification (UQ) in inverse problems, presented as Part I of a two-part series. CUQIpy employs a Bayesian framework, integrating prior knowledge with observed data to produce posterior probability distributions that characterize the uncertainty in computed solutions to inverse problems. The package offers a high-level modeling framework with concise syntax, allowing users to easily specify their inverse problems, prior information, and statistical assumptions. CUQIpy supports a range of efficient sampling strategies and is designed to handle large-scale problems. Notably, the automatic sampler selection feature analyzes the problem structure and chooses a suitable sampler without user intervention, streamlining the process. With a selection of probability distributions, test problems, computational methods, and visualization tools, CUQIpy serves as a powerful, flexible, and adaptable tool for UQ in a wide selection of inverse problems. Part II of the series focuses on the use of CUQIpy for UQ in inverse problems with partial differential equations.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] CUQIpy: II. Computational uncertainty quantification for PDE-based inverse problems in Python']Python
    Alghamdi, Amal M. A.
    Riis, Nicolai A. B.
    Afkham, Babak M.
    Uribe, Felipe
    Christensen, Silja L.
    Hansen, Per Christian
    Jorgensen, Jakob S.
    INVERSE PROBLEMS, 2024, 40 (04)
  • [2] Uncertainpy: A Python']Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience
    Tennoe, Simen
    Halnes, Geir
    Einevoll, Gaute T.
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [3] UQpy v4.1: Uncertainty quantification with Python']Python
    Tsapetis, Dimitrios
    Shields, Michael D.
    Giovanis, Dimitris G.
    Olivier, Audrey
    Novak, Lukas
    Chakroborty, Promit
    Sharma, Himanshu
    Chauhan, Mohit
    Kontolati, Katiana
    Vandanapu, Lohit
    Loukrezis, Dimitrios
    Gardner, Michael
    SOFTWAREX, 2023, 24
  • [4] Performance of MATLAB and Python']Python for Computational Electromagnetic Problems
    Weiss, Alec J.
    Elsherbeni, Atef Z.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (07): : 770 - 777
  • [5] TRIPs-Py: Techniques for regularization of inverse problems in python']python
    Pasha, Mirjeta
    Gazzola, Silvia
    Sanderford, Connor
    Ugwu, Ugochukwu O.
    NUMERICAL ALGORITHMS, 2024, : 285 - 322
  • [6] UQpy: A general purpose Python']Python package and development environment for uncertainty quantification
    Olivier, Audrey
    Giovanis, Dimitris G.
    Aakash, B. S.
    Chauhan, Mohit
    Vandanapu, Lohit
    Shields, Michael D.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 47
  • [7] A particle-filter based framework for inverse problems using ANSYS Fluent and Python']Python
    Marques Margotto, Bruno Henrique
    Polatschek Kopperschmidt, Carlos Eduardo
    Colac, Marcelo Jose
    da Silva, Wellington Betencurte
    Sampaio Dutra, Julio Cesar
    Silva de Abreu, Luiz Antonio
    PROCEEDINGS OF CHT-21 ICHMT INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER, 2021, 2021,
  • [8] EZFF: Python']Python library for multi-objective parameterization and uncertainty quantification of interatomic forcefields for molecular dynamics
    Krishnamoorthy, Aravind
    Mishra, Ankit
    Kamal, Deepak
    Hong, Sungwook
    Nomura, Ken-ichi
    Tiwari, Subodh
    Nakano, Aiichiro
    Kalia, Rajiv
    Ramprasad, Rampi
    Vashishta, Priya
    SOFTWAREX, 2021, 13
  • [9] A Python']Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
    Heimann, Sebastian
    Vasyura-Bathke, Hannes
    Sudhaus, Henriette
    Isken, Marius Paul
    Kriegerowski, Marius
    Steinberg, Andreas
    Dahm, Torsten
    SOLID EARTH, 2019, 10 (06) : 1921 - 1935
  • [10] Equivariant Bootstrapping for Uncertainty Quantification in Imaging Inverse Problems
    Tachella, Julian
    Pereyra, Marcelo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238