CUQIpy: I. Computational uncertainty quantification for inverse problems in Python']Python

被引:0
|
作者
Riis, Nicolai A. B. [1 ,4 ]
Alghamdi, Amal M. A. [1 ]
Uribe, Felipe [2 ]
Christensen, Silja L. [1 ]
Afkham, Babak M. [1 ]
Hansen, Per Christian [1 ]
Jorgensen, Jakob S. [1 ,3 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Richard Petersens Plads,Bldg 324, DK-2800 Lyngby, Denmark
[2] Lappeenranta Lahti Univ Technol LUT, Sch Engn Sci, Yliopistonkatu 34, Lappeenranta 53850, Finland
[3] Univ Manchester, Dept Math, Oxford Rd, Alan Turing Bldg, Manchester M13 9PL, England
[4] Copenhagen Imaging ApS, Herlev, Denmark
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
uncertainty quantification; software; computational imaging; Bayesian statistics; probabilistic programming; DISTRIBUTIONS; SAMPLER;
D O I
10.1088/1361-6420/ad22e7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces CUQIpy, a versatile open-source Python package for computational uncertainty quantification (UQ) in inverse problems, presented as Part I of a two-part series. CUQIpy employs a Bayesian framework, integrating prior knowledge with observed data to produce posterior probability distributions that characterize the uncertainty in computed solutions to inverse problems. The package offers a high-level modeling framework with concise syntax, allowing users to easily specify their inverse problems, prior information, and statistical assumptions. CUQIpy supports a range of efficient sampling strategies and is designed to handle large-scale problems. Notably, the automatic sampler selection feature analyzes the problem structure and chooses a suitable sampler without user intervention, streamlining the process. With a selection of probability distributions, test problems, computational methods, and visualization tools, CUQIpy serves as a powerful, flexible, and adaptable tool for UQ in a wide selection of inverse problems. Part II of the series focuses on the use of CUQIpy for UQ in inverse problems with partial differential equations.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Non-linear model reduction for uncertainty quantification in large-scale inverse problems
    Galbally, D.
    Fidkowski, K.
    Willcox, K.
    Ghattas, O.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (12) : 1581 - 1608
  • [42] TOWARD AFFORDABLE UNCERTAINTY QUANTIFICATION FOR INDUSTRIAL PROBLEMS - PART I: THEORY AND VALIDATION
    Ghisu, Tiziano
    Shahpar, Shahrokh
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 2C, 2017,
  • [43] Inverse problems for homogeneous transport equations: I. The one-dimensional case
    Bal, G
    INVERSE PROBLEMS, 2000, 16 (04) : 997 - 1011
  • [44] Randomized physics-informed machine learning for uncertainty quantification in high-dimensional inverse problems
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [45] Uncertainty quantification for goal-oriented inverse problems via variational encoder-decoder networks
    Afkham, Babak Maboudi
    Chung, Julianne
    Chung, Matthias
    INVERSE PROBLEMS, 2024, 40 (07)
  • [46] MIXED COMPUTATIONAL ALGORITHM FOR PLANE ELASTIC CONTACT PROBLEMS - I. FORMULATION.
    Heyliger, P.R.
    Reddy, J.N.
    1600, (26):
  • [47] A MEASURE-THEORETIC COMPUTATIONAL METHOD FOR INVERSE SENSITIVITY PROBLEMS I: METHOD AND ANALYSIS
    Breidt, J.
    Butler, T.
    Estep, D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 1836 - 1859
  • [48] Efficient uncertainty quantification techniques in inverse problems for Richards' equation using coarse-scale simulation models
    Dostert, P.
    Efendiev, Y.
    Mohanty, B.
    ADVANCES IN WATER RESOURCES, 2009, 32 (03) : 329 - 339
  • [49] Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
    Travelletti, Cedric
    Ginsbourger, David
    Linde, Niklas
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (01): : 168 - 198
  • [50] Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems Combining Reduced Basis Methods and Reduction Error Models
    Manzoni, A.
    Pagani, S.
    Lassila, T.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 380 - 412