TRIPs-Py: Techniques for regularization of inverse problems in python']python

被引:2
|
作者
Pasha, Mirjeta [1 ]
Gazzola, Silvia [2 ]
Sanderford, Connor [3 ]
Ugwu, Ugochukwu O. [4 ]
机构
[1] MIT, Lab Decis & Informat Syst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Bath, Dept Math Sci, 4 West,Claverton Down, Bath BA2 7AY, Somerset, England
[3] Arizona State Univ, Sch Biol & Hlth Syst Engn, 501 Tyler Mall Win, Tempe, AZ 85281 USA
[4] Tufts Univ, Sch Engn Elect & Comp Engn, 161 Coll Ave, Medford, MA 02155 USA
关键词
Regularization; Inverse problem; !text type='Python']Python[!/text; Software; Computerized tomography; Deblurring; Dynamic inverse problem; Krylov methods; Edge-preserving; Sparsity; TIKHONOV REGULARIZATION; OPTIMIZATION; ITERATIONS;
D O I
10.1007/s11075-024-01878-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe TRIPs-Py, a new Python package of linear discrete inverse problems solvers and test problems. The goal of the package is two-fold: 1) to provide tools for solving small and large-scale inverse problems, and 2) to introduce test problems arising from a wide range of applications. The solvers available in TRIPs-Py include direct regularization methods (such as truncated singular value decomposition and Tikhonov) and iterative regularization techniques (such as Krylov subspace methods and recent solvers for & ell;p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document}-& ell;q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _q$$\end{document} formulations, which enforce sparse or edge-preserving solutions and handle different noise types). All our solvers have built-in strategies to define the regularization parameter(s). Some of the test problems in TRIPs-Py arise from simulated image deblurring and computerized tomography, while other test problems model real problems in dynamic computerized tomography. Numerical examples are included to illustrate the usage as well as the performance of the described methods on the provided test problems. To the best of our knowledge, TRIPs-Py is the first Python software package of this kind, which may serve both research and didactical purposes.
引用
收藏
页码:285 / 322
页数:38
相关论文
共 50 条
  • [1] Py4Syn: Python']Python for synchrotrons
    Slepicka, H. H.
    Canova, H. F.
    Beniz, D. B.
    Piton, J. R.
    JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 : 1182 - 1189
  • [2] CUQIpy: I. Computational uncertainty quantification for inverse problems in Python']Python
    Riis, Nicolai A. B.
    Alghamdi, Amal M. A.
    Uribe, Felipe
    Christensen, Silja L.
    Afkham, Babak M.
    Hansen, Per Christian
    Jorgensen, Jakob S.
    INVERSE PROBLEMS, 2024, 40 (04)
  • [3] TAT.py: Tropospheric Analysis Tools in Python']Python
    Zennaro, Marco
    Rainone, Marco
    Pietrosemoli, Ermanno
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 25 - 29
  • [4] Bash2py: A Bash to Python']Python Translator
    Davis, Ian J.
    Wexler, Mike
    Zhang, Cheng
    Holt, Richard C.
    Weber, Theresa
    2015 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), 2015, : 508 - 511
  • [5] rely.py, a python']python script to detect reliable clades
    Li, Blaise
    Dettai, Agnes
    Lecointre, Guillaume
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2010, 54 (01) : 306 - 308
  • [6] PM4Py: A process mining library for Python']Python
    Berti, Alessandro
    van Zelst, Sebastiaan
    Schuster, Daniel
    SOFTWARE IMPACTS, 2023, 17
  • [7] Py-Feat: Python']Python Facial Expression Analysis Toolbox
    Cheong, Jin Hyun
    Jolly, Eshin
    Xie, Tiankang
    Byrne, Sophie
    Kenney, Matthew
    Chang, Luke J. J.
    AFFECTIVE SCIENCE, 2023, 4 (04) : 781 - 796
  • [8] gnss_lib_py: Analyzing GNSS data with Python']Python
    Knowles, Derek
    Kanhere, Ashwin Vivek
    Neamati, Daniel
    Gao, Grace
    SOFTWAREX, 2024, 27
  • [9] A particle-filter based framework for inverse problems using ANSYS Fluent and Python']Python
    Marques Margotto, Bruno Henrique
    Polatschek Kopperschmidt, Carlos Eduardo
    Colac, Marcelo Jose
    da Silva, Wellington Betencurte
    Sampaio Dutra, Julio Cesar
    Silva de Abreu, Luiz Antonio
    PROCEEDINGS OF CHT-21 ICHMT INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER, 2021, 2021,
  • [10] R/PY-SUMMA: An R/Python']Python Package for Unsupervised Ensemble Learning for Binary Classification Problems in Bioinformatics
    Ahsen, Mehmet Eren
    Vogel, Robert
    Stolovitzky, Gustavo A.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (09) : 1337 - 1340