FP-IMC: A 28nm All-Digital Configurable Floating-Point In-Memory Computing Macro

被引:3
|
作者
Saikia, Jyotishman [1 ]
Sridharan, Amitesh [1 ]
Yeo, Injune [1 ]
Venkataramanaiah, Shreyas [1 ]
Fan, Deliang [1 ]
Seo, Jae-Sun [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
Digital in-memory computing; floating-point acceleration;
D O I
10.1109/ESSCIRC59616.2023.10268770
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing (IMC) provides energy-efficient solutions to deep neural networks (DNN). Most IMC designs for DNNs employ fixed-point precisions. However, floating-point precision is still required for DNN training and complex inference models to maintain high accuracy. There have not been float-point precision based IMC works in the literature where the float-point computation is immersed into the weight memory storage. In this work, we propose a novel floating-point precision IMC macro with a configurable architecture that supports both normal 8-bit floating point (FP8) and 8-bit block floating point (BF8) with a shared exponent. The proposed FP-IMC macro implemented in 28nm CMOS demonstrates 12.1 TOPS/W for FP8 precision and 66.6 TOPS/W for BF8 precision, improving energy-efficiency beyond the state-of-the-art FP IMC macros.
引用
收藏
页码:405 / 408
页数:4
相关论文
共 36 条
  • [1] FP-ATM: A Flexible Floating Point NOR Adder Tree Macro for In-Memory Computing
    Attuluri, Yathin Kumar
    Chudasama, Ruchit
    Prasad, Kailash
    Mekie, Joycee
    PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, VLSID 2024 AND 23RD INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS, ES 2024, 2024, : 247 - 252
  • [2] SP-IMC: A Sparsity Aware In-Memory-Computing Macro in 28nm CMOS with Configurable Sparse Representation for Highly Sparse DNN Workloads
    Sridharan, Amitesh
    Zhang, Fan
    Seo, Jae-sun
    Fan, Deliang
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [3] All-Digital Noise Monitoring System Based on Floating-Point DSP
    Yue, Qian
    Tan, Qian
    Chen, Xiaodong
    Yu, Daoyin
    PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON IMAGE ANALYSIS & SIGNAL PROCESSING, 2009, 2009, : 204 - 208
  • [4] A 28-nm Floating-Point Computing-in-Memory Processor Using Intensive-CIM Sparse-Digital Architecture
    Yan, Shengzhe
    Yue, Jinshan
    He, Chaojie
    Wang, Zi
    Cong, Zhaori
    He, Yifan
    Zhou, Mufeng
    Sun, Wenyu
    Li, Xueqing
    Dou, Chunmeng
    Zhang, Feng
    Yang, Huazhong
    Liu, Yongpan
    Liu, Ming
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (08) : 2630 - 2643
  • [5] DIMCA: An Area-Efficient Digital In-Memory Computing Macro Featuring Approximate Arithmetic Hardware in 28 nm
    Lin, Chuan-Tung
    Wang, Dewei
    Zhang, Bo
    Chen, Gregory K.
    Knag, Phil C.
    Krishnamurthy, Ram Kumar
    Seok, Mingoo
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (03) : 960 - 971
  • [6] Measurement of Aging Effect on an Analog Computing-In-Memory Macro in 28nm CMOS
    Wang, Wei-Chun
    Zhang, Shida
    Sharma, Sudarshan
    Lee, Minah
    Mukhopadhyay, Saibal
    2024 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, IRPS 2024, 2024,
  • [7] A 28nm 1.644TFLOPS/W Floating-Point Computation SRAM Macro with Variable Precision for Deep Neural Network Inference and Training
    Jeong, Sangsu
    Park, Jeongwoo
    Jeon, Dongsuk
    ESSCIRC 2022- IEEE 48TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2022, : 145 - 148
  • [8] All-Digital Computing-in-Memory Macro Supporting FP64-Based Fused Multiply-Add Operation
    Li, Dejian
    Mo, Kefan
    Liu, Liang
    Pan, Biao
    Li, Weili
    Kang, Wang
    Li, Lei
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [9] An All-Digital PWM Generator with 62.5ps Resolution in 28nm CMOS Technology
    Hoeppner, Sebastian
    Haenzsche, Stefan
    Scholze, Stefan
    Schueffny, Rene
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1738 - 1741
  • [10] A 28-nm 64-kb 31.6-TFLOPS/W Digital-Domain Floating-Point-Computing-Unit and Double-Bit 6T-SRAM Computing-in-Memory Macro for Floating-Point CNNs
    Guo, An
    Chen, Xi
    Dong, Fangyuan
    Pu, Xingyu
    Li, Dongqi
    Zhang, Jingmin
    Dong, Xueshan
    Gao, Hui
    Zhang, Yiran
    Wang, Bo
    Yang, Jun
    Si, Xin
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (09) : 3032 - 3044