Some tight bounds on the minimum and maximum forcing numbers of graphs

被引:0
|
作者
Liu, Qianqian [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Perfect matching; Minimum forcing number; Maximum forcing number; Bipartite graph; PERFECT MATCHINGS;
D O I
10.1016/j.dam.2022.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with 2n vertices and a perfect matching. We denote by f (G) and F (G) the minimum and maximum forcing numbers of G, respectively. Hetyei obtained that the number of edges of graphs G with a unique perfect matching is at most n2. Since a graph G has a unique perfect matching if and only if f (G) = 0, along this line, we generalize easily the classical result to all graphs G with f (G) = k for 0 <= k <= n- 1, and get a non-trivial lower bound of f (G) in terms of the order and size. For bipartite graphs, we gain the corresponding stronger results. Such lower bounds enable one to obtain the minimum forcing number of some dense graphs. Further, we obtain a new upper bound of F (G). For bipartite graphs G, Che and Chen (2013) obtained that f (G) = n - 1 if and only if G is complete bipartite graph Kn,n. We completely characterize all bipartite graphs G with f (G) = n - 2. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [41] Bounds for the Rainbow Disconnection Numbers of Graphs
    Xu Qing Bai
    Zhong Huang
    Xue Liang Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 384 - 396
  • [42] Bounds for the Rainbow Disconnection Numbers of Graphs
    Xu Qing BAI
    Zhong HUANG
    Xue Liang LI
    Acta Mathematica Sinica,English Series, 2022, (02) : 384 - 396
  • [43] On the Bounds of the Domination Numbers of Glued Graphs
    Sripratak, Piyashat
    Panma, Sayan
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (04): : 1719 - 1728
  • [44] Bounds for mean colour numbers of graphs
    Dong, FM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (02) : 348 - 365
  • [45] BOUNDS ON ROMAN DOMINATION NUMBERS OF GRAPHS
    Mobaraky, B. P.
    Sheikholeslami, S. M.
    MATEMATICKI VESNIK, 2008, 60 (04): : 247 - 253
  • [46] Tight bounds on discrete quantitative Helly numbers
    Averkov, Gennadiy
    Merino, Bernardo Gonzalez
    Paschke, Ingo
    Schymura, Matthias
    Weltge, Stefan
    ADVANCES IN APPLIED MATHEMATICS, 2017, 89 : 76 - 101
  • [47] Bounds on minimum semidefinite rank of graphs
    Narayan, Sivaram K.
    Sharawi, Yousra
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 774 - 787
  • [48] CLASS OF SELF-COMPLEMENTARY GRAPHS AND LOWER BOUNDS OF SOME RAMSEY NUMBERS
    CLAPHAM, CRJ
    JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 287 - 289
  • [49] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [50] Tight Bounds for Secretary Matching in General Graphs
    Ezra, Tomer
    Feldman, Michal
    Gravin, Nikolai
    Tang, Zhihao
    MATHEMATICS OF OPERATIONS RESEARCH, 2024,