Some tight bounds on the minimum and maximum forcing numbers of graphs

被引:0
|
作者
Liu, Qianqian [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Perfect matching; Minimum forcing number; Maximum forcing number; Bipartite graph; PERFECT MATCHINGS;
D O I
10.1016/j.dam.2022.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with 2n vertices and a perfect matching. We denote by f (G) and F (G) the minimum and maximum forcing numbers of G, respectively. Hetyei obtained that the number of edges of graphs G with a unique perfect matching is at most n2. Since a graph G has a unique perfect matching if and only if f (G) = 0, along this line, we generalize easily the classical result to all graphs G with f (G) = k for 0 <= k <= n- 1, and get a non-trivial lower bound of f (G) in terms of the order and size. For bipartite graphs, we gain the corresponding stronger results. Such lower bounds enable one to obtain the minimum forcing number of some dense graphs. Further, we obtain a new upper bound of F (G). For bipartite graphs G, Che and Chen (2013) obtained that f (G) = n - 1 if and only if G is complete bipartite graph Kn,n. We completely characterize all bipartite graphs G with f (G) = n - 2. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [21] Complete forcing numbers of graphs
    He, Xin
    Zhang, Heping
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (02)
  • [22] Lower bounds for independence numbers of some locally sparse graphs
    Li, Yusheng
    Lin, Qizhong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 717 - 725
  • [23] Lower bounds for independence numbers of some locally sparse graphs
    Yusheng Li
    Qizhong Lin
    Journal of Combinatorial Optimization, 2014, 28 : 717 - 725
  • [24] Some tight bounds for the harmonic index and the variation of the Randic index of graphs
    Deng, Hanyuan
    Balachandran, Selvaraj
    Elumalai, Suresh
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2060 - 2065
  • [25] Bounds on the forcing domination number of graphs
    Karami, H.
    Sheikholeslami, S. M.
    Toomanian, M.
    UTILITAS MATHEMATICA, 2010, 83 : 171 - 178
  • [26] TIGHT BOUNDS ON MINIMUM BROADCAST NETWORKS
    GRIGNI, M
    PELEG, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (02) : 207 - 222
  • [27] Forcing matching numbers of fullerene graphs
    Zhang, Heping
    Ye, Dong
    Shiu, Wai Chee
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (05) : 573 - 582
  • [28] FORCING SIGNED DOMINATION NUMBERS IN GRAPHS
    Sheikholeslami, S. M.
    MATEMATICKI VESNIK, 2007, 59 (04): : 171 - 179
  • [29] Tight Bounds for Linkages in Planar Graphs
    Adler, Isolde
    Kolliopoulos, Stavros G.
    Krause, Philipp Klaus
    Lokshtanov, Daniel
    Saurabh, Saket
    Thilikos, Dimitrios
    AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT I, 2011, 6755 : 110 - 121
  • [30] On the forcing matching numbers of prisms of graphs
    Mohammadian, Ali
    DISCRETE MATHEMATICS, 2022, 345 (04)