Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP

被引:49
|
作者
Temenos, Anastasios [1 ]
Temenos, Nikos [1 ]
Kaselimi, Maria [1 ]
Doulamis, Anastasios [1 ]
Doulamis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Sch Rural Surveying & Geoinformat Engn, Athens 15780, Greece
基金
欧盟地平线“2020”;
关键词
Remote sensing; Convolutional neural networks; Correlation; Additives; Deep learning; Crops; Standards; Convolutional neural network (CNN); EuroSAT; explainable AI (XAI); land cover; land use; remote sensing; Shapley additive explanation (SHAP); BENCHMARK;
D O I
10.1109/LGRS.2023.3251652
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An interpretable deep learning framework for land use and land cover (LULC) classification in remote sensing using Shapley additive explanations (SHAPs) is introduced. It utilizes a compact convolutional neural network (CNN) model for the classification of satellite images and then feeds the results to a SHAP deep explainer so as to strengthen the classification results. The proposed framework is applied to Sentinel-2 satellite images containing 27000 images of pixel size $64 \times 64$ and operates on three-band combinations, reducing the model's input data by 77% considering that 13 channels are available, while at the same time investigating on how different spectrum bands affect predictions on the dataset's classes. Experimental results on the EuroSAT dataset demonstrate the CNN's accurate classification with an overall accuracy of 94.72 %, whereas the classification accuracy on three-band combinations on each of the dataset's classes highlights its improvement when compared to standard approaches with larger number of trainable parameters. The SHAP explainable results of the proposed framework shield the network's predictions by showing correlation values that are relevant to the predicted class, thereby improving the classifications occurring in urban and rural areas with different land uses in the same scene.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Land Use and Land Cover Classification Meets Deep Learning: A Review
    Zhao, Shengyu
    Tu, Kaiwen
    Ye, Shutong
    Tang, Hao
    Hu, Yaocong
    Xie, Chao
    SENSORS, 2023, 23 (21)
  • [22] Deep and Ensemble Learning Based Land Use and Land Cover Classification
    Benbriqa, Hicham
    Abnane, Ibtissam
    Idri, Ali
    Tabiti, Khouloud
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT III, 2021, 12951 : 588 - 604
  • [23] Extended Vision Transformer (ExViT) for Land Use and Land Cover Classification: A Multimodal Deep Learning Framework
    Yao, Jing
    Zhang, Bing
    Li, Chenyu
    Hong, Danfeng
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Intelligent classification model of land resource use using deep learning in remote sensing images
    Liao, Qingtao
    ECOLOGICAL MODELLING, 2023, 475
  • [25] Urban land use and land cover mapping: proposal of a classification system with remote sensing
    Azevedo, Thiago
    Matias, Lindon Fonseca
    AGUA Y TERRITORIO, 2024, (23): : 73 - 82
  • [26] Advanced Multisource Optical Remote Sensing for Urban Land Use and Land Cover Classification
    Le Saux, Bertrand
    Yokoya, Naoto
    Haensch, Ronny
    Prasad, Saurabh
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2018, 6 (04): : 85 - 89
  • [27] Land use land cover classification using Sentinel imagery based on deep learning models
    Sawant, Suraj
    Ghosh, Jayanta Kumar
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [28] Radar remote sensing: Land cover classification
    Jaroszewski, S
    Lefevre, R
    1998 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL. 3, 1998, : 373 - 378
  • [29] Effect of Canal on Land Use/Land Cover using Remote Sensing and GIS
    Mukherjee, S.
    Shashtri, S.
    Singh, C. K.
    Srivastava, P. K.
    Gupta, M.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2009, 37 (03) : 527 - 537
  • [30] Change Detection of Land Use and Land Cover using Remote Sensing Techniques
    Harish, Ballu
    Manjulavani, K.
    Shantosh, M.
    MadhaviSupriya, V
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 2806 - 2810