Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP

被引:49
|
作者
Temenos, Anastasios [1 ]
Temenos, Nikos [1 ]
Kaselimi, Maria [1 ]
Doulamis, Anastasios [1 ]
Doulamis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Sch Rural Surveying & Geoinformat Engn, Athens 15780, Greece
基金
欧盟地平线“2020”;
关键词
Remote sensing; Convolutional neural networks; Correlation; Additives; Deep learning; Crops; Standards; Convolutional neural network (CNN); EuroSAT; explainable AI (XAI); land cover; land use; remote sensing; Shapley additive explanation (SHAP); BENCHMARK;
D O I
10.1109/LGRS.2023.3251652
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An interpretable deep learning framework for land use and land cover (LULC) classification in remote sensing using Shapley additive explanations (SHAPs) is introduced. It utilizes a compact convolutional neural network (CNN) model for the classification of satellite images and then feeds the results to a SHAP deep explainer so as to strengthen the classification results. The proposed framework is applied to Sentinel-2 satellite images containing 27000 images of pixel size $64 \times 64$ and operates on three-band combinations, reducing the model's input data by 77% considering that 13 channels are available, while at the same time investigating on how different spectrum bands affect predictions on the dataset's classes. Experimental results on the EuroSAT dataset demonstrate the CNN's accurate classification with an overall accuracy of 94.72 %, whereas the classification accuracy on three-band combinations on each of the dataset's classes highlights its improvement when compared to standard approaches with larger number of trainable parameters. The SHAP explainable results of the proposed framework shield the network's predictions by showing correlation values that are relevant to the predicted class, thereby improving the classifications occurring in urban and rural areas with different land uses in the same scene.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Remote Sensing Based Land Cover Classification Using Machine Learning and Deep Learning: A Comprehensive Survey
    Mitra, Soma
    Basu, Saikat
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (02): : 381 - 399
  • [12] Enhancing land cover classification in remote sensing imagery using an optimal deep learning model
    Motwake, Abdelwahed
    Hashim, Aisha Hassan Abdalla
    Obayya, Marwa
    Eltahir, Majdy M.
    AIMS MATHEMATICS, 2024, 9 (01): : 140 - 159
  • [13] Land Resource Use Classification Using Deep Learning in Ecological Remote Sensing Images
    Xia, Bin
    Kong, Fanyu
    Zhou, Jun
    Wu, Xin
    Xie, Qiong
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [14] Application of Deep Learning in Land Use Classification for Soil Erosion Using Remote Sensing
    Wan, Lihong
    Li, Shihua
    Chen, Yao
    He, Ze
    Shi, Yanli
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [15] Using hyperspectral remote sensing for land cover classification
    Zhang, W
    Sriharan, S
    MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 : 261 - 270
  • [16] Land cover land use classification of urban areas: A remote sensing approach
    Heikkonen, J
    Varfis, A
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1998, 12 (04) : 475 - 489
  • [17] Land use/land cover change classification and prediction using deep learning approaches
    Ebenezer, P. Adlene
    Manohar, S.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 223 - 232
  • [18] Land use/land cover change classification and prediction using deep learning approaches
    P. Adlene Ebenezer
    S. Manohar
    Signal, Image and Video Processing, 2024, 18 : 223 - 232
  • [19] A Deep Transfer Learning Framework Using Teacher-Student Structure for Land Cover Classification of Remote-Sensing Imagery
    Zhang, Xiaodong
    Li, Xianwei
    Chen, Guanzhou
    Liao, Puyun
    Wang, Tong
    Yang, Haobo
    He, Chanjuan
    Zhou, Wenlin
    Sun, Yufeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [20] LAND COVER CLASSIFICATION USING VERY HIGH SPATIAL RESOLUTION REMOTE SENSING DATA AND DEEP LEARNING
    Kenins, R.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2020, 57 (1-2) : 71 - 77