Iterative learning control of complex Ginzburg-Landau system

被引:0
|
作者
Cai, Liuchi [1 ]
Dai, Xisheng [1 ,2 ]
Zhang, Jianxiang [1 ]
Huang, Qingnan [1 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex Ginzburg-Landau system; iterative learning control; distributed control; convergence analysis; MODEL; WAVE; EXISTENCE;
D O I
10.1177/01423312221132036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Different from the existing research on iterative learning control (ILC) real-valued systems, complex-valued partial differential system is studied in this paper. All variables and parameters of the system are complex, and distributed control is imposed on the system. First, the original complex system is transformed into two coupled real systems, which represent the real and imaginary parts of the original complex system, respectively. Second, a complex P-type ILC algorithm is designed that the real and imaginary parts of the learning law are coupled to each other. Then, the contraction mapping principle and analytical techniques are used to ensure that the tracking error converges to zero in the sense of L-2 -norm. Finally, a numerical simulation is presented to show the effectiveness of the proposed algorithm.
引用
收藏
页码:1169 / 1179
页数:11
相关论文
共 50 条
  • [41] Ergodicity for the stochastic complex Ginzburg-Landau equations
    Odasso, Cyril
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (04): : 417 - 454
  • [42] Synchronization in nonidentical complex Ginzburg-Landau equations
    Zhou, CT
    CHAOS, 2006, 16 (01)
  • [43] Conservation laws of the complex Ginzburg-Landau equation
    Kudryashov, Nikolay A.
    PHYSICS LETTERS A, 2023, 481
  • [44] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [45] Optical solitons with complex Ginzburg-Landau equation
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Eslami, Mostafa
    Zhou, Qin
    Kara, Abdul H.
    Milovic, Daniela
    Majid, Fayequa B.
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1979 - 2016
  • [46] Nonequilibrium dynamics in the complex Ginzburg-Landau equation
    Puri, S
    Das, SK
    Cross, MC
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [47] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51
  • [48] Standing waves of the complex Ginzburg-Landau equation
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 26 - 32
  • [49] Bistability in the complex Ginzburg-Landau equation with drift
    Houghton, S. M.
    Tobias, S. M.
    Knobloch, E.
    Proctor, M. R. E.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) : 184 - 196
  • [50] The inviscid limit for the complex Ginzburg-Landau equation
    Machihara, S
    Nakamura, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) : 552 - 564