Iterative learning control of complex Ginzburg-Landau system

被引:0
|
作者
Cai, Liuchi [1 ]
Dai, Xisheng [1 ,2 ]
Zhang, Jianxiang [1 ]
Huang, Qingnan [1 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex Ginzburg-Landau system; iterative learning control; distributed control; convergence analysis; MODEL; WAVE; EXISTENCE;
D O I
10.1177/01423312221132036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Different from the existing research on iterative learning control (ILC) real-valued systems, complex-valued partial differential system is studied in this paper. All variables and parameters of the system are complex, and distributed control is imposed on the system. First, the original complex system is transformed into two coupled real systems, which represent the real and imaginary parts of the original complex system, respectively. Second, a complex P-type ILC algorithm is designed that the real and imaginary parts of the learning law are coupled to each other. Then, the contraction mapping principle and analytical techniques are used to ensure that the tracking error converges to zero in the sense of L-2 -norm. Finally, a numerical simulation is presented to show the effectiveness of the proposed algorithm.
引用
收藏
页码:1169 / 1179
页数:11
相关论文
共 50 条
  • [31] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631
  • [32] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [33] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [34] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [35] Null controllability of the complex Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 649 - 673
  • [36] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [37] Boundary effects in the complex Ginzburg-Landau equation
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2209 - 2214
  • [39] Accessible solitons in complex Ginzburg-Landau media
    He, Yingji
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [40] Complex Ginzburg-Landau equation with nonlocal coupling
    Tanaka, D
    Kuramoto, Y
    PHYSICAL REVIEW E, 2003, 68 (02):