Einstein field equations extended to fractal manifolds: A fractal perspective

被引:6
|
作者
Golmankhaneh, Alireza Khalili [1 ]
Jorgensen, Palle E. T. [2 ]
Schlichtinger, Agnieszka Matylda [3 ]
机构
[1] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh 63896, West Azerbaijan, Iran
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Univ Wroclaw, Inst Theoret Phys, Fac Phys & Astron, Pl M Borna 9, PL-50204 Wroclaw, Poland
关键词
Fractal manifolds; Fractal Einstein field equation; Fractal arc length; Fractal Riemannian manifold; SIERPINSKI GASKET; CALCULUS; DIFFUSION; TRANSFORM; GEOMETRY; CURVES; MODEL; TIME;
D O I
10.1016/j.geomphys.2023.105081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a framework for understanding and analyzing non-differentiable fractal manifolds. By introducing specialized mathematical concepts and equations, such as the Metric Tensor, Curvature Tensors, Analogue Arc Length, and Inner Product, it enables the study of complex patterns that exhibit self-similarity across different scales and dimensions. The Analogue Geodesic and Einstein Field Equations, among others, offer practical applications in physics, highlighting the relevance and potential of fractal geometry.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] LORENTZIAN MANIFOLDS ADMITTING ISOTROPIC HYPERSURFACES SOLUTIONS OF EINSTEIN FIELD-EQUATIONS
    BURDET, G
    PAPACOSTAS, T
    PERRIN, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1994, 3 (01): : 163 - 166
  • [42] ON SOLUTIONS OF FRACTAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Atangana, Abdon
    Akgul, Ali
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10): : 3441 - 3457
  • [43] Fractal scattering in a radiation field
    Lin, Yi-Der
    Barr, Alex
    Na, Kyungsun
    Reichl, Linda E.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [44] Friedmann equations of the fractal apparent horizon
    Jalalzadeh, R.
    Jalalzadeh, S.
    Jahromi, A. Sayahian
    Moradpour, H.
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [45] Stochastic differential equations with fractal noise
    Zähle, M
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (09) : 1097 - 1106
  • [46] Higher order fractal differential equations
    Golmankhaneh, Alireza Khalili
    Depollier, Claude
    Pham, Diana
    MODERN PHYSICS LETTERS A, 2024, 39 (27N28)
  • [47] Extended Einstein-Cartan theory a la Diakonov: The field equations
    Obukhov, Yuri N.
    Hehl, Friedrich W.
    PHYSICS LETTERS B, 2012, 713 (03) : 321 - 325
  • [48] Fractal differential equations on the Sierpinski gasket
    Dalrymple, K
    Strichartz, RS
    Vinson, JP
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) : 203 - 284
  • [49] SEMILINEAR ELLIPTIC EQUATIONS ON FRACTAL SETS
    陈化
    贺振亚
    ActaMathematicaScientia, 2009, 29 (02) : 232 - 242
  • [50] Analysis of fractal fractional differential equations
    Atangana, Abdon
    Akgul, Ali
    Owolabi, Kolade M.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1117 - 1134