Einstein field equations extended to fractal manifolds: A fractal perspective

被引:6
|
作者
Golmankhaneh, Alireza Khalili [1 ]
Jorgensen, Palle E. T. [2 ]
Schlichtinger, Agnieszka Matylda [3 ]
机构
[1] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh 63896, West Azerbaijan, Iran
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Univ Wroclaw, Inst Theoret Phys, Fac Phys & Astron, Pl M Borna 9, PL-50204 Wroclaw, Poland
关键词
Fractal manifolds; Fractal Einstein field equation; Fractal arc length; Fractal Riemannian manifold; SIERPINSKI GASKET; CALCULUS; DIFFUSION; TRANSFORM; GEOMETRY; CURVES; MODEL; TIME;
D O I
10.1016/j.geomphys.2023.105081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a framework for understanding and analyzing non-differentiable fractal manifolds. By introducing specialized mathematical concepts and equations, such as the Metric Tensor, Curvature Tensors, Analogue Arc Length, and Inner Product, it enables the study of complex patterns that exhibit self-similarity across different scales and dimensions. The Analogue Geodesic and Einstein Field Equations, among others, offer practical applications in physics, highlighting the relevance and potential of fractal geometry.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Fractal Perspective on Scale in Geography
    Jiang, Bin
    Brandt, S. Anders
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (06)
  • [32] Fractal Antennas: An Historical Perspective
    Anguera, Jaume
    Andujar, Aurora
    Jayasinghe, Jeevani
    Chakravarthy, V. V. S. S. Sameer
    Chowdary, P. S. R.
    Pijoan, Joan L.
    Ali, Tanweer
    Cattani, Carlo
    FRACTAL AND FRACTIONAL, 2020, 4 (01) : 1 - 26
  • [33] Fractal Weyl laws for asymptotically hyperbolic manifolds
    Datchev, Kiril
    Dyatlov, Semyon
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (04) : 1145 - 1206
  • [34] Fractal Weyl laws for asymptotically hyperbolic manifolds
    Kiril Datchev
    Semyon Dyatlov
    Geometric and Functional Analysis, 2013, 23 : 1145 - 1206
  • [35] Implications of an extended fractal hydrodynamic model
    M. Agop
    P. E. Nica
    S. Gurlui
    C. Focsa
    V. P. Paun
    M. Colotin
    The European Physical Journal D, 2010, 56 : 405 - 419
  • [36] FRACTAL DIMENSION OF SPATIALLY EXTENDED SYSTEMS
    TORCINI, A
    POLITI, A
    PUCCIONI, GP
    DALESSANDRO, G
    PHYSICA D, 1991, 53 (01): : 85 - 101
  • [37] Fractal tiling with the extended modular group
    Ye, RS
    Zou, YR
    Lu, J
    COMPUTATIONAL AND INFORMATION SCIENCE, PROCEEDINGS, 2004, 3314 : 286 - 291
  • [38] Implications of an extended fractal hydrodynamic model
    Agop, M.
    Nica, P. E.
    Gurlui, S.
    Focsa, C.
    Paun, V. P.
    Colotin, M.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 56 (03): : 405 - 419
  • [39] EINSTEIN EQUATIONS AND REALIZABILITY OF CR MANIFOLDS
    LEWANDOWSKI, J
    NUROWSKI, P
    TAFEL, J
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (11) : L241 - L246
  • [40] A Variational Analysis of Einstein–Scalar Field Lichnerowicz Equations on Compact Riemannian Manifolds
    Emmanuel Hebey
    Frank Pacard
    Daniel Pollack
    Communications in Mathematical Physics, 2008, 278 : 117 - 132