Linear Active Disturbance Rejection Control for a Laser Powder Bed Fusion Additive Manufacturing Process

被引:0
|
作者
Hussain, S. Zahid [1 ]
Kausar, Zareena [1 ]
Koreshi, Zafar Ullah [1 ]
Shah, Muhammad Faizan [2 ]
Abdullah, Ahmd [1 ]
Farooq, Muhammad Umer [2 ]
机构
[1] Air Univ, Dept Mechatron & Biomed Engn, Islamabad 44000, Pakistan
[2] Khwaja Fareed Univ Engn & Informat Technol, Inst Mech & Mfg Engn, Rahim Yar Khan 64200, Pakistan
关键词
additive manufacturing; selective laser melting; process modeling; disturbance modeling; disturbance rejection; process control; PRECISION MOTION CONTROL; FEEDBACK-CONTROL; PARAMETERS;
D O I
10.3390/electronics12020471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Functional metal parts with complicated geometry and internal features for the aerospace and automotive industries can be created using the laser powder bed fusion additive manufacturing (AM) technique. However, the lack of uniform quality of the produced parts in terms of strength limits its enormous potential for general adoption in industries. Most of the defects in selective laser melting (SLM) parts are associated with a nonuniform melt pool size. The melt pool area may fluctuate in spite of constant SLM processing parameters, like laser power, laser speed, hatching distance, and layer thickness. This is due to heat accumulation in the current track from previously scanned tracks in the current layer. The feedback control strategy is a promising tool for maintaining the melt pool dimensions. In this study, a dynamic model of the melt pool cross-sectional area is considered. The model is based on the energy balance of lumped melt pool parameters. Energy coming from previously scanned tracks is considered a source of disturbance for the current melt pool cross-section area in the control algorithm. To track the reference melt pool area and manage the disturbances and uncertainties, a linear active disturbance rejection control (LADRC) strategy is considered. The LADRC control technique is more successful in terms of rapid reference tracking and disturbance rejection when compared to the conventional PID controller. The simulation study shows that an LADRC control strategy presents a 65% faster time response than the PID, a 97% reduction in the steady state error, and a 98% reduction in overshoot. The integral time absolute error (ITAE) performance index shows 95% improvement for reference tracking of the melt pool area in SLM. In terms of reference tracking and robustness, LADRC outperforms the PID controller and ensures that the melt pool size remains constant.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive Manufacturing of Metals
    Ye, Jianchao
    Rubenchik, Alexander M.
    Crumb, Michael F.
    Guss, Gabe
    Matthews, Manyalibo J.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [42] Absorptivity and energy scaling associated with laser powder bed fusion additive manufacturing
    Matthews, Manyalibo
    Ye, Jianchao
    Gargalis, Leo
    Guss, Gabe
    Khairallah, Saad
    Rubenchik, Alexander
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [43] Laser Powder Bed Fusion Additive Manufacturing of Recycled Zircaloy-4
    Ahn, Soung Yeoul
    Jeong, Sang Guk
    Kim, Eun Seong
    Kang, Suk Hoon
    Choe, Jungho
    Ryu, Joo Young
    Choi, Dae Woon
    Lee, Jin Seok
    Cho, Jung-Wook
    Nakano, Takayoshi
    Kim, Hyoung Seop
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (09) : 2760 - 2766
  • [44] Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
    Sing, S. L.
    Yeong, W. Y.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (03) : 359 - 370
  • [45] Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces
    Toshi-Taka Ikeshoji
    Makiko Yonehara
    Chika Kato
    Yuma Yanaga
    Koki Takeshita
    Hideki Kyogoku
    Scientific Reports, 12
  • [46] Laser Powder Bed Fusion Additive Manufacturing of Recycled Zircaloy-4
    Soung Yeoul Ahn
    Sang Guk Jeong
    Eun Seong Kim
    Suk Hoon Kang
    Jungho Choe
    Joo Young Ryu
    Dae Woon Choi
    Jin Seok Lee
    Jung-Wook Cho
    Takayoshi Nakano
    Hyoung Seop Kim
    Metals and Materials International, 2023, 29 : 2760 - 2766
  • [47] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Zhuangzhuang Liu
    Qihang Zhou
    Xiaokang Liang
    Xiebin Wang
    Guichuan Li
    Kim Vanmeensel
    Jianxin Xie
    International Journal of Extreme Manufacturing, 2024, (02) : 33 - 68
  • [48] A mechanistic explanation of shrinkage porosity in laser powder bed fusion additive manufacturing
    Templeton, William Frieden
    Hinnebusch, Shawn
    Strayer, Seth T.
    To, Albert C.
    Pistorius, P. Chris
    Narra, Sneha Prabha
    ACTA MATERIALIA, 2024, 266
  • [49] Composition regulation of composite materials in laser powder bed fusion additive manufacturing
    Yao, Dengzhi
    Wang, Ju
    Cai, Yao
    Zhao, Tingting
    An, Xizhong
    Zhang, Hao
    Fu, Haitao
    Yang, Xiaohong
    Zou, Qingchuan
    Wang, Lin
    POWDER TECHNOLOGY, 2022, 408
  • [50] Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys
    Meng, Fuxiang
    Du, Yulei
    MATERIALS, 2024, 17 (17)