Linear Active Disturbance Rejection Control for a Laser Powder Bed Fusion Additive Manufacturing Process

被引:0
|
作者
Hussain, S. Zahid [1 ]
Kausar, Zareena [1 ]
Koreshi, Zafar Ullah [1 ]
Shah, Muhammad Faizan [2 ]
Abdullah, Ahmd [1 ]
Farooq, Muhammad Umer [2 ]
机构
[1] Air Univ, Dept Mechatron & Biomed Engn, Islamabad 44000, Pakistan
[2] Khwaja Fareed Univ Engn & Informat Technol, Inst Mech & Mfg Engn, Rahim Yar Khan 64200, Pakistan
关键词
additive manufacturing; selective laser melting; process modeling; disturbance modeling; disturbance rejection; process control; PRECISION MOTION CONTROL; FEEDBACK-CONTROL; PARAMETERS;
D O I
10.3390/electronics12020471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Functional metal parts with complicated geometry and internal features for the aerospace and automotive industries can be created using the laser powder bed fusion additive manufacturing (AM) technique. However, the lack of uniform quality of the produced parts in terms of strength limits its enormous potential for general adoption in industries. Most of the defects in selective laser melting (SLM) parts are associated with a nonuniform melt pool size. The melt pool area may fluctuate in spite of constant SLM processing parameters, like laser power, laser speed, hatching distance, and layer thickness. This is due to heat accumulation in the current track from previously scanned tracks in the current layer. The feedback control strategy is a promising tool for maintaining the melt pool dimensions. In this study, a dynamic model of the melt pool cross-sectional area is considered. The model is based on the energy balance of lumped melt pool parameters. Energy coming from previously scanned tracks is considered a source of disturbance for the current melt pool cross-section area in the control algorithm. To track the reference melt pool area and manage the disturbances and uncertainties, a linear active disturbance rejection control (LADRC) strategy is considered. The LADRC control technique is more successful in terms of rapid reference tracking and disturbance rejection when compared to the conventional PID controller. The simulation study shows that an LADRC control strategy presents a 65% faster time response than the PID, a 97% reduction in the steady state error, and a 98% reduction in overshoot. The integral time absolute error (ITAE) performance index shows 95% improvement for reference tracking of the melt pool area in SLM. In terms of reference tracking and robustness, LADRC outperforms the PID controller and ensures that the melt pool size remains constant.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
    Shi, Rongpei
    Khairallah, Saad A.
    Roehling, Tien T.
    Heo, Tae Wook
    McKeown, Joseph T.
    Matthews, Manyalibo J.
    ACTA MATERIALIA, 2020, 184 (284-305) : 284 - 305
  • [32] Volumetric heat source model for laser-based powder bed fusion process in additive manufacturing
    Mollamahmutoglu, Mehmet
    Yilmaz, Oguzhan
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 25
  • [33] Temperature Profile, Bead Geometry, and Elemental Evaporation in Laser Powder Bed Fusion Additive Manufacturing Process
    Faiyaz Ahsan
    Leila Ladani
    JOM, 2020, 72 : 429 - 439
  • [34] Temperature Profile, Bead Geometry, and Elemental Evaporation in Laser Powder Bed Fusion Additive Manufacturing Process
    Ahsan, Faiyaz
    Ladani, Leila
    JOM, 2020, 72 (01) : 429 - 439
  • [35] Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing
    Fox, Jason C.
    Moylan, Shawn P.
    Lane, Brandon M.
    3RD CIRP CONFERENCE ON SURFACE INTEGRITY, 2016, 45 : 131 - 134
  • [36] The process planning for additive and subtractive hybrid manufacturing of powder bed fusion (PBF) process
    Wang, Yin
    Chen, Yukai
    Wen, Chuyue
    Huang, Ke
    Chen, Zhen
    Han, Bin
    Zhang, Qi
    MATERIALS & DESIGN, 2023, 227
  • [37] Perspectives on recent breakthroughs in laser powder bed fusion for metal additive manufacturing
    Rajendran, Naveen Kumar
    Kumar, Sanjay
    Agrawal, Trapty
    Kumar, Mukesh
    Sellamuthu, Prabhukumar
    Gantra, Amit
    PROGRESS IN ADDITIVE MANUFACTURING, 2025,
  • [38] Role of gravity magnitude on flowability and powder spreading in the powder bed fusion additive manufacturing process: Towards additive manufacturing in space
    Yim, Seungkyun
    Wang, Hao
    Aoyagi, Kenta
    Yamanaka, Kenta
    Chiba, Akihiko
    ADDITIVE MANUFACTURING, 2024, 94
  • [39] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Liu, Zhuangzhuang
    Zhou, Qihang
    Liang, Xiaokang
    Wang, Xiebin
    Li, Guichuan
    Vanmeensel, Kim
    Xie, Jianxin
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)
  • [40] Development of Micro Laser Powder Bed Fusion for Additive Manufacturing of Inconel 718
    Khademzadeh, Saeed
    Gennari, Claudio
    Zanovello, Andrea
    Franceschi, Mattia
    Campagnolo, Alberto
    Brunelli, Katya
    MATERIALS, 2022, 15 (15)