On the Lie algebra structure of integrable derivations

被引:0
|
作者
Briggs, Benjamin [1 ]
Degrassi, Lleonard Rubio y [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
INVARIANCE;
D O I
10.1112/blms.12884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on work of Gerstenhaber, we show that the space of integrable derivations on an Artin algebra A$A$ forms a Lie algebra, and a restricted Lie algebra if A$A$ contains a field of characteristic p$p$. We deduce that the space of integrable classes in HH1(A)${\operatorname{HH}}<^>1(A)$ forms a (restricted) Lie algebra that is invariant under derived equivalences, and under stable equivalences of Morita type between self-injective algebras. We also provide negative answers to questions about integrable derivations posed by Linckelmann and by Farkas, Geiss and Marcos. Along the way, we compute the first Hochschild cohomology of the group algebra of any symmetric group.
引用
收藏
页码:2617 / 2634
页数:18
相关论文
共 50 条
  • [41] On Integrable Modules for the Twisted Full Toroidal Lie Algebra
    Batra, Punita
    Rao, Senapathi Eswara
    JOURNAL OF LIE THEORY, 2018, 28 (01) : 79 - 105
  • [42] Multidimensional integrable systems and deformations of Lie algebra homomorphisms
    Dunajski, Maciej
    Grant, James D. E.
    Strachan, Ian A. B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [43] The Lie algebra generated by locally nilpotent derivations on a Danielewski surface
    Kutzschebauch, Frank
    Leuenberger, Matthias
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 15 : 183 - 207
  • [44] Derivations of the 3-Lie Algebra Realized by gl(n, ℂ)
    Ruipu Bai
    Jinxiu Wang
    Zhenheng Li
    Journal of Nonlinear Mathematical Physics, 2011, 18 : 151 - 160
  • [45] SKEW-SYMMETRICAL DERIVATIONS OF A COMPLEX LIE-ALGEBRA
    BAJO, I
    MONATSHEFTE FUR MATHEMATIK, 1994, 118 (1-2): : 1 - 6
  • [46] Indecomposable representations of the Lie algebra of derivations for d-torus
    Lian HaiFeng
    Tan ShaoBin
    Zeng Bo
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 305 - 314
  • [47] Local derivations on the Lie algebra W(2,2)
    Wu, Qingyan
    Gao, Shoulan
    Liu, Dong
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (04): : 631 - 643
  • [48] Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism
    Bavula, Vladimir V.
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) : 553 - 556
  • [49] Derivations of the Lie Algebra of Strictly Block Upper Triangular Matrices
    Ghimire, Prakash
    Huang, Huajun
    JOURNAL OF LIE THEORY, 2020, 30 (04) : 1027 - 1046
  • [50] Indecomposable representations of the Lie algebra of derivations for d-torus
    HaiFeng Lian
    ShaoBin Tan
    Bo Zeng
    Science China Mathematics, 2010, 53 : 305 - 314