On the Lie algebra structure of integrable derivations

被引:0
|
作者
Briggs, Benjamin [1 ]
Degrassi, Lleonard Rubio y [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
INVARIANCE;
D O I
10.1112/blms.12884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on work of Gerstenhaber, we show that the space of integrable derivations on an Artin algebra A$A$ forms a Lie algebra, and a restricted Lie algebra if A$A$ contains a field of characteristic p$p$. We deduce that the space of integrable classes in HH1(A)${\operatorname{HH}}<^>1(A)$ forms a (restricted) Lie algebra that is invariant under derived equivalences, and under stable equivalences of Morita type between self-injective algebras. We also provide negative answers to questions about integrable derivations posed by Linckelmann and by Farkas, Geiss and Marcos. Along the way, we compute the first Hochschild cohomology of the group algebra of any symmetric group.
引用
收藏
页码:2617 / 2634
页数:18
相关论文
共 50 条
  • [21] Representations of the Lie algebra of derivations for quantum torus
    Lin, WQ
    Tan, SB
    JOURNAL OF ALGEBRA, 2004, 275 (01) : 250 - 274
  • [22] Derivations and Automorphisms of a Lie Algebra of Block Type
    Xia, Chunguang
    Wang, Wei
    ALGEBRA COLLOQUIUM, 2013, 20 (01) : 173 - 180
  • [23] Effective computation of algebra of derivations of Lie algebras
    Camacho, LM
    Gómez, JR
    Navarro, RM
    Rodríguez, I
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2000, : 101 - 111
  • [24] Independent systems of derivations and Lie algebra representations
    Skryabin, S
    ALGEBRA AND ANALYSIS, 1996, : 115 - 150
  • [25] MORE ON LIE DERIVATIONS OF A GENERALIZED MATRIX ALGEBRA
    Mokhtari, A. H.
    Vishki, H. R. Ebrahimi
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 385 - 396
  • [26] The orthogonal Lie algebra of operators: Ideals and derivations
    Bu, Qinggang
    Zhu, Sen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [27] AUTOMORPHISMS AND DERIVATIONS OF A FRECHET ALGEBRA OF LOCALLY INTEGRABLE FUNCTIONS
    GHAHRAMANI, F
    MCCLURE, JP
    STUDIA MATHEMATICA, 1992, 103 (01) : 51 - 69
  • [28] Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy
    Tao Si-Xing
    Xia Tie-Cheng
    CHINESE PHYSICS LETTERS, 2010, 27 (04)
  • [29] An extension of Lie algebra and a related integrable system
    Zhang, YF
    Guo, FK
    ACTA PHYSICA SINICA, 2004, 53 (05) : 1276 - 1279
  • [30] An integrable Hierarchy on the Perfect Schrodinger Lie Algebra
    Casati, Paolo
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563