On the Lie algebra structure of integrable derivations

被引:0
|
作者
Briggs, Benjamin [1 ]
Degrassi, Lleonard Rubio y [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
INVARIANCE;
D O I
10.1112/blms.12884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on work of Gerstenhaber, we show that the space of integrable derivations on an Artin algebra A$A$ forms a Lie algebra, and a restricted Lie algebra if A$A$ contains a field of characteristic p$p$. We deduce that the space of integrable classes in HH1(A)${\operatorname{HH}}<^>1(A)$ forms a (restricted) Lie algebra that is invariant under derived equivalences, and under stable equivalences of Morita type between self-injective algebras. We also provide negative answers to questions about integrable derivations posed by Linckelmann and by Farkas, Geiss and Marcos. Along the way, we compute the first Hochschild cohomology of the group algebra of any symmetric group.
引用
收藏
页码:2617 / 2634
页数:18
相关论文
共 50 条